Toggle light / dark theme

Rethinking Energy 2020–2030: 100% Solar, Wind, and Batteries is Just the Beginning

Wow…even I was amazed by these stats and timeline… and I am an unapologetic optimist and futurist who wants to live forever lol.


This video is a synopsis of our research report “Rethinking Energy 2020–2030: 100% Solar, Wind, and Batteries is Just the Beginning” that was published on October 27th, 2020 and is available for download free of charge from our RethinkX website https://www.rethinkx.com/energy.

We are on the cusp of the fastest, deepest, most profound disruption of the energy sector in over a century. Like most disruptions, this one is being driven by the convergence of several key technologies whose costs and capabilities have been improving on consistent and predictable trajectories – namely, solar photovoltaic power, wind power, and lithium-ion battery energy storage.

Our analysis shows that 100% clean electricity from the combination of solar, wind, and batteries (SWB) is both physically possible and economically affordable across the entire continental United States as well as the overwhelming majority of other populated regions of the world by 2030. Adoption of SWB is growing exponentially worldwide and disruption is now inevitable because by 2030 they will offer the cheapest electricity option for most regions.

Coal, gas, and nuclear power assets will become stranded during the 2020s, and no new investment in these technologies is rational from this point forward. But the replacement of conventional energy technology with SWB is just the beginning. As has been the.

Quantum Computer Breakthrough: New Blueprint for Better, Faster Qubits

Researchers at the Paul Scherrer Institute PSI have put forward a detailed plan of how faster and better defined quantum bits — qubits — can be created. The central elements are magnetic atoms from the class of so-called rare-earth metals, which would be selectively implanted into the crystal lattice of a material. Each of these atoms represents one qubit. The researchers have demonstrated how these qubits can be activated, entangled, used as memory bits, and read out. They have now published their design concept and supporting calculations in the journal PRX Quantum.

On the way to quantum computers, an initial requirement is to create so-called quantum bits or “qubits”: memory bits that can, unlike classical bits, take on not only the binary values of zero and one, but also any arbitrary combination of these states. “With this, an entirely new kind of computation and data processing becomes possible, which for specific applications means an enormous acceleration of computing power,” explains PSI researcher Manuel Grimm, first author of a new paper on the topic of qubits.

Venus may have once been habitable: Can we make it that way again?

From planet of love to scorching Hell planet—the image of Venus has changed considerably since ancient times, because it is no longer just the third brightest natural object in Earth’s skies. The ancients equated the mysterious third light with the goddess of love; in Greece that was Aphrodite, whom the Romans conflated with the goddess Venus. That’s where our closest planetary neighbor got its name and why Men are from Mars, Women are from Venus worked as a best-selling title, as recently as 1992, and still sells. But since the mid-20th century, we’ve known in detail why a paradise Venus is not. Average temperature on the surface is a scorching 462° Celsius (864° Fahrenheit) while atmospheric pressure is 90 times that of Earth at sea level, or equivalent to being at 900 meters depth in Earth’s oceans.

A handful of Russian landing probes have survived for several minutes on the planet’s surface before being cooked and crushed, but the conditions are unquestionably inhospitable for life forms. Consequently, you do not hear about astrobiologists searching for native microorganisms on the Venusian surface the way you hear about the search for microorganisms on Mars. Nevertheless, since the late 20th century, planetary scientists have speculated that Venus could have boasted a much more hospitable environment in the distant past, perhaps 2–3 billion years ago. That’s around the time that Earth was accumulating oxygen in its oceans and atmosphere. At that point in history, Venus and Earth may have had similar climates.

What’s been in the news lately is a study involving computer climate simulations in which data from NASA’s Magellan mission to Venus were found to support the idea of a once habitable Venus. The study involved researchers from NASA, Uppsala University in Sweden, Columbia University, and the Planetary Science Institute in Tucson, AZ.

What It’s Like To be a Computer: An Interview with GPT-3

Tech featured in this video:

* Learn more about the GPT-3 API Here: https://openai.com/blog/openai-api/
* GPT-3 Paper: Language Models are Few Shot Learners — https://arxiv.org/abs/2005.14165
* Avatar for GPT-3 provided by Synthesia https://www.synthesia.io/

Resources for JavaScript developers:

* DevAnywhere — Live, remote 1:1 mentorship subscription: https://DevAnywhere.io.
* EricElliottJS.com — Learn TDD, functional programming, software design principles and JavaScript with online, interactive lessons. https://ericelliottjs.com.
* Composing Software eBook: https://leanpub.com/composingsoftware.
* Composing Software paperback: https://amzn.to/3biid58
* Follow me on Twitter https://twitter.com/_ericelliott.
* Follow JS_Cheerleader on Twitter: https://twitter.com/JS_Cheerleader.

Eric Elliott is a tech product and platform advisor, author of “Composing Software”, cofounder of EricElliottJS.com and DevAnywhere.io, and dev team mentor. He has contributed to software experiences for Adobe Systems, Zumba Fitness, The Wall Street Journal, ESPN, BBC, and top recording artists including Usher, Frank Ocean, Metallica, and many more.

He enjoys a remote lifestyle with the most beautiful woman in the world.

Optimizing traffic signals to reduce wait times at intersections

Traffic lights at intersections are managed by simple computers that assign the right of way to the nonconflicting direction. However, studies looking at travel times in urban areas have shown that delays caused by intersections make up 12–55% of daily commute travel, which could be reduced if the operation of these controllers can be made more efficient to avoid unnecessary wait times.

Storing information with light

New photo-ferroelectric materials allow storage of information in a non-volatile way using light stimulus. The idea is to create energy efficient memory devices with high performance and versatility to face current challenges. The study has been published in Nature Communications by Josep Fontcuberta and co-workers and opens a path towards further investigations on this phenomenon and to neuromorphic computing applications.

Can you imagine controlling the properties of a material by just shining on it? We are used to seeing that the temperature of materials increases when exposed to the sun. But light may also have subtler effects. Indeed, light photons can create pairs of free charge carriers in otherwise insulating materials. This is the basic principle of the photovoltaic panels we use to harvest from sun.

In a new twist, a light-induced change of materials’ properties could be used in , allowing more efficient storage of information and faster access and computing. This, in fact, is one of our society’s current challenges: being able to develop commercially available which are, at the same time, energy efficient. Smaller electronic devices having lower energy consumption and high performance and versatility are the goal.

Ten computer codes that transformed science

Although no list like this can be definitive, we polled dozens of researchers over the past year to develop a diverse line-up of ten software tools that have had a big impact on the world of science. You can weigh in on our choices at the end of the story.


From Fortran to arXiv.org, these advances in programming and platforms sent biology, climate science and physics into warp speed.

Rethinking spin chemistry from a quantum perspective

Researchers at Osaka City University use quantum superposition states and Bayesian inference to create a quantum algorithm, easily executable on quantum computers, that accurately and directly calculates energy differences between the electronic ground and excited spin states of molecular systems in polynomial time.

Understanding how the natural world works enables us to mimic it for the benefit of humankind. Think of how much we rely on batteries. At the core is understanding molecular structures and the behavior of electrons within them. Calculating the energy differences between a molecule’s electronic ground and excited spin states helps us understand how to better use that molecule in a variety of chemical, biomedical and industrial applications. We have made much progress in molecules with closed-shell systems, in which electrons are paired up and stable. Open-shell systems, on the other hand, are less stable and their underlying electronic behavior is complex, and thus more difficult to understand. They have unpaired electrons in their ground state, which cause their energy to vary due to the intrinsic nature of electron spins, and makes measurements difficult, especially as the molecules increase in size and complexity.