Menu

Blog

Archive for the ‘computing’ category: Page 608

May 18, 2019

Samsung at foundry event talks about 3nm, MBCFET developments

Posted by in category: computing

“The nanometer process deals with the space between the transistors mounted on a substrate at a nanometer level,” said Pulse.

“The narrower the distance, the more chips can be squeezed in to boost computing power and energy efficiency. One nanometer corresponds to one ten-thousandth the diameter of a human hair.”

Continue reading “Samsung at foundry event talks about 3nm, MBCFET developments” »

May 17, 2019

Ultra-clean fabrication platform produces nearly ideal 2-D transistors

Posted by in categories: business, computing, engineering, particle physics

Semiconductors, which are the basic building blocks of transistors, microprocessors, lasers, and LEDs, have driven advances in computing, memory, communications, and lighting technologies since the mid-20th century. Recently discovered two-dimensional materials, which feature many superlative properties, have the potential to advance these technologies, but creating 2-D devices with both good electrical contacts and stable performance has proved challenging.

Researchers at Columbia Engineering report that they have demonstrated a nearly ideal transistor made from a two-dimensional (2-D) material stack—with only a two-atom-thick semiconducting layer—by developing a completely clean and damage-free process. Their method shows vastly improved performance compared to 2-D semiconductors fabricated with a conventional process, and could provide a scalable platform for creating ultra-clean devices in the future. The study was published today in Nature Electronics.

Continue reading “Ultra-clean fabrication platform produces nearly ideal 2-D transistors” »

May 17, 2019

NIST team demonstrates heart of next-generation chip-scale atomic clock

Posted by in categories: computing, particle physics, satellites

Physicists at the National Institute of Standards and Technology (NIST) and partners have demonstrated an experimental, next-generation atomic clock—ticking at high “optical” frequencies—that is much smaller than usual, made of just three small chips plus supporting electronics and optics.

Described in Optica, the chip-scale clock is based on the vibrations, or “ticks,” of confined in a tiny glass container, called a vapor cell, on a chip. Two frequency combs on chips act like gears to link the atoms’ high-frequency optical ticks to a lower, widely used microwave frequency that can be used in applications.

The chip-based heart of the new clock requires very little power (just 275 milliwatts) and, with additional technology advances, could potentially be made small enough to be handheld. Chip-scale optical clocks like this could eventually replace traditional oscillators in applications such as navigation systems and telecommunications networks and serve as backup clocks on satellites.

Continue reading “NIST team demonstrates heart of next-generation chip-scale atomic clock” »

May 17, 2019

Amazing Device Turns Thoughts Into Audible Sentences

Posted by in categories: computing, neuroscience

It’s the first brain-computer interface to synthesize an entire sentence.

Read more

May 17, 2019

A New Ion-Drive Transistor Is Here to Interface With Your Brain

Posted by in categories: biotech/medical, computing, cyborgs, neuroscience

Silicon transistors and the brain don’t mix.

At least not optimally. As scientists and companies are increasingly exploring ways to interface your brain with computers, fashioning new hardware that conforms to and compliments our biological wetware becomes increasingly important.

To be fair, silicon transistors, when made into electrode arrays, can perform the basics: record neural signals, process and analyze them with increasingly sophisticated programs that detect patterns, which in turn can be used to stimulate the brain or control smart prosthetics.

Continue reading “A New Ion-Drive Transistor Is Here to Interface With Your Brain” »

May 17, 2019

Manipulating atoms one at a time with an electron beam

Posted by in categories: computing, engineering, particle physics, quantum physics

The ultimate degree of control for engineering would be the ability to create and manipulate materials at the most basic level, fabricating devices atom by atom with precise control.

Now, scientists at MIT, the University of Vienna, and several other institutions have taken a step in that direction, developing a method that can reposition atoms with a highly focused electron and control their exact location and bonding orientation. The finding could ultimately lead to new ways of making quantum computing devices or sensors, and usher in a new age of “atomic engineering,” they say.

The advance is described today in the journal Science Advances, in a paper by MIT professor of nuclear science and engineering Ju Li, graduate student Cong Su, Professor Toma Susi of the University of Vienna, and 13 others at MIT, the University of Vienna, Oak Ridge National Laboratory, and in China, Ecuador, and Denmark.

Continue reading “Manipulating atoms one at a time with an electron beam” »

May 17, 2019

XPS 15 2-in-1’s maglev keyboard may find its way into other Dell laptops — Frank Azor

Posted by in categories: computing, entertainment

Much ado has been made of Dell’s new maglev keyboard, currently exclusive to the XPS 15 9575 2-in-1. Utilizing rare-earth magnets to repulse the keys back up once depressed, the keyboard still provides a decent amount of feedback despite its meager 0.7mm of travel.

In a late March webcast for Dell’s new products, the company’s Vice President & General Manager Alienware, Gaming and XPS, Frank Azor, mentioned that the keyboard could be adopted in more of Dell’s laptops — if it proves popular.

The major advantage of design is that it allows the laptop to be thinner, but not everyone is a fan. Though it provides more travel and feedback than Apple’s much-maligned “butterfly” keyboard, initial reviews suggest that the keyboard is basically tolerable, but it isn’t going to replace a ThinkPad’s keyboard anytime soon.

Continue reading “XPS 15 2-in-1’s maglev keyboard may find its way into other Dell laptops — Frank Azor” »

May 17, 2019

Laptops to get maglev keyboards that reduce their thickness

Posted by in category: computing

Magnetic levitation keyboards have been around for a while, but they’ve never really taken off, or floated our boats, or attracted much atten… Anyway, a Taiwanese manufacturer called Darfon is persevering with the idea, and it’s discovered that maglev keys, which rest on opposing magnets instead of mushy membranes or mechanical switches, can make laptop keyboards significantly thinner. Unfortunately, according to a CNET journalist who played with a couple of prototypes at Computex, the keys can be hard to type on if skinniness is taken to the extreme. Then again, there’s scope to change the resistance of the keyboard electronically to suit your preference, and Darfon claims it has already received orders from laptop makers who are targeting launches later this year. If that’s true, perhaps the technology isn’t so repellant after all.

[Image credit: Aloysius Low / CNET].

Read more

May 17, 2019

Scientists just teleported a quantum gate for the first time

Posted by in categories: computing, quantum physics

Breakthrough will help with the development of reliable quantum computers.

Read more

May 17, 2019

Quantum cloud computing with self-check

Posted by in categories: chemistry, computing, particle physics, quantum physics

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists first simulated the spontaneous formation of a pair of elementary particles with a digital quantum computer at the University of Innsbruck. Due to the error rate, however, more complex simulations would require a large number of quantum bits that are not yet available in today’s quantum computers. The analog simulation of quantum systems in a quantum computer also has narrow limits. Using a new method, researchers around Christian Kokail, Christine Maier und Rick van Bijnen at the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences have now surpassed these limits. They use a programmable ion trap quantum computer with 20 quantum bits as a quantum coprocessor, in which quantum mechanical calculations that reach the limits of classical computers are outsourced.

Read more