Toggle light / dark theme

World-First Quantum Research Breakthrough Allows for Full Spin Qubit Control

‘’A research team with Denmark’s University of Copenhagen has designed the world’s first quantum computing system that allows for simultaneous operation of all its qubits without threatening quantum coherence.’’


A team of researchers from Denmark have achieved a breakthrough in quantum computing by designing a system that allows for all qubits to be manipulated and observed — at the same time — without compromising the system’s quantum coherence.

Quantum computing: IBM just created this new way to measure the speed of quantum processors

Speed is only one of the three critical attributes that reflect the performance of a quantum computer, according to IBM, with the two others being scale and quality. Scale is measured by the number of qubits that the quantum processor supports, while quality can be determined thanks to quantum volume, which is another benchmark that IBM developed in 2017 to gauge how faithfully a quantum circuit can be implemented in a quantum computing system.

SEE: What is quantum computing? Everything you need to know about the strange world of quantum computers

Quantum volume is a metric that is now widely adopted across the industry, with major players like Honeywell basing performance measurements on the benchmark. IBM hopes that CLOPS will follow a similar path and this way enable quantum computing companies to put numbers on all three aspects of performance.

Is Neuralink Real? Yes — Human Trials Start In 2020÷21…

The concept and technology behind Neuralink are so far ahead of what we’ve grown accustomed to that it might as well be magic. Make no mistake Neuralink is happening and it’ll be here sooner than you think…

I remember the first time I heard about Neuralink. I thought it was a joke or something far off in the future. Then I heard Elon Musk was behind it and immediately knew that this bonkers technology would be with us a lot sooner than any of us imagined.

The concept of Neuralink is simple: you have a chip implanted in your brain and with this chip, you can control things – computer games, applications, your phone, beam thoughts to other Neuralink users. Elon has even demoed the tech working inside a monkey’s head.

New Optical Switch Is Up to 1,000 Times Faster Than Silicon Transistors

It consists of a 35-nanometer-wide film made out of an organic semiconductor sandwiched between two mirrors that create a microcavity, which keeps light trapped inside. When a bright “pump” laser is shone onto the device, photons from its beam couple with the material to create a conglomeration of quasiparticles known as a Bose-Einstein condensate, a collection of particles that behaves like a single atom.

A second weaker laser can be used to switch the condensate between two levels with different numbers of quasiparticles. The level with more particles represents the “on” state of a transistor, while the one with fewer represents the “off” state.

What’s most promising about the new device, described in a paper in Nature, is that it can be switched between its two states a trillion times a second, which is somewhere between 100 and 1,000 times faster than today’s leading commercial transistors. It can also be switched by just a single photon, which means it requires far less energy to drive than a transistor.

What chip shortage? AMD books capacity years ahead to ease crunches

LISBON, Nov 2 (Reuters) — Chip designer Advanced Micro Devices (AMD.O) has been able to skirt most of the problems linked with the global chip supply shortage by forecasting demand years in advance, a top executive said on Tuesday.

Demand for electronics gadgets from people stuck in homes due to the pandemic has led to a shortage of semiconductors that are used from anything from mobile phones and cars.

But despite a squeeze in supply, AMD has been able to take market share away from rival Intel (INTC.O) in both PCs and servers with its latest line of processors.

Does reality exist? | Anil Seth, Sabine Hossenfelder, Massimo Pigliucci & Anders Sandberg

Sabine Hossenfelder, Anil Seth, Massimo Pigliucci & Anders Sandberg discuss whether humanity is stuck in the matrix.

If you enjoy this video check out more content on the mind, reality and reason from the world’s biggest speakers at https://iai.tv/debates-and-talks?channel=philosophy%3Amind-a…the-matrix.

00:00 Introduction.
02:21 Anders Sandberg | We could be living in a superior race’s simulation.
04:16 Sabine Hossenfelder | The simulation hypothesis is pseudoscience.
06:20 Anil Seth | Is whether we are a simulation even important?
09:29 Massimo Pigliucci | The mind is too complex to be replicated.
13:14 Is it reasonable to question the existence of reality?
23:55 How do we define reality?
29:34 Are we victim to Hollywood fantasy?

Are we living in a computer simulated reality? Until recently the possibility that we are living in a computer simulation was largely limited to fans of The Matrix with an over active imagination or sci-fi fantasists. But now some are arguing that strange quirks of our universe, like the indeterminateness of quantum theory and the black hole information paradox are evidence that our reality is in actuality a created simulation. Moreover, tech guru Elon Musk has come out supporting the theory, arguing that ““we are most likely in a simulation””.

Should we take the idea that we are living in a computer simulation seriously? Groundbreaking consciousness researcher Anil Seth, stoic philosopher Massimo Pigliucci, maverick physicist and Youtube sensation Sabine Hossenfelder and Oxford transhumanist Anders Sandberg ask if we are stuck in the matrix. The debate is hosted by Güneş Taylor.

#AnilSeth #MassimoPigliucci #ComputerSimulatedReality.

Researchers discover predictable behavior in promising material for computer memory

In the last few years, a class of materials called antiferroelectrics has been increasingly studied for its potential applications in modern computer memory devices. Research has shown that antiferroelectric-based memories might have greater energy efficiency and faster read and write speeds than conventional memories, among other appealing attributes. Further, the same compounds that can exhibit antiferroelectric behavior are already integrated into existing semiconductor chip manufacturing processes.

Now, a team led by Georgia Tech researchers has discovered unexpectedly familiar behavior in the antiferroelectric material known as zirconium dioxide, or zirconia. They show that as the microstructure of the material is reduced in size, it behaves similarly to much better understood materials known as ferroelectrics. The findings were recently published in the journal Advanced Electronic Materials.

Miniaturization of circuits has played a key role in improving memory performance over the last fifty years. Knowing how the properties of an antiferroelectric change with shrinking size should enable the design of more effective memory components.

Ventilation matters: Engineering airflow to avoid spreading COVID-19

As we approach two full years of the COVID-19 pandemic, we now know it spreads primarily through airborne transmission. The virus rides inside tiny microscopic droplets or aerosol ejected from our mouths when we speak, shout, sing, cough, or sneeze. It then floats within the air, where it can be inhaled by and transmitted.

This inspired researchers in India to explore how we can better understand and engineer airflow to mitigate the transmission of COVID-19. To do this, they used their knowledge of airflow around aircraft and engines to tailor the airflow within indoor spaces.

In Physics of Fluids, they report computer simulations of airflow within a public washroom showing infectious aerosols in can linger up to 10 times longer than the rest of the room. These dead zones of trapped air are frequently found in corners of a room or around furniture.

/* */