Menu

Blog

Archive for the ‘computing’ category: Page 550

Mar 20, 2020

Why Intel Is Investing In Neuromorphic Computing

Posted by in categories: computing, quantum physics

The neuromorphic approach is still in deep research, and is being investigated by Intel, IBM, HPE, MIT, Purdue, Stanford and others. It will likely be deployed in production solutions within the next three to five years. Like quantum computing, there is potential for a future solution than could be 1,000–10,000 times more efficient than the digital processing approach that is currently in vogue. But also like quantum, neuromorphic computing will require a lot of research to reach fruition. When it does, it will likely only be applied to a specific set of challenges. I will continue to watch with interest.


Analyst Karl Freund takes a look at Intel’s recent announcements in the realm of neuromorphic computing.

Mar 19, 2020

Stretchable supercapacitors to power tomorrow’s wearable devices

Posted by in categories: biotech/medical, computing, engineering, wearables

Researchers at Duke University and Michigan State University have engineered a novel type of supercapacitor that remains fully functional even when stretched to eight times its original size. It does not exhibit any wear and tear from being stretched repeatedly and loses only a few percentage points of energy performance after 10,000 cycles of charging and discharging.

The researchers envision the being part of a power-independent, stretchable, flexible electronic system for applications such as wearable electronics or .

The results appear online March 19 in Matter, a journal from Cell Press. The research team includes senior author Changyong Cao, assistant professor of packaging, and electrical and computer engineering at Michigan State University (MSU), and senior author Jeff Glass, professor of electrical and computer engineering at Duke. Their co-authors are doctoral students Yihao Zhou and Qiwei Han and research scientist Charles Parker from Duke, as well as Ph.D. student Yunteng Cao from the Massachusetts Institutes of Technology.

Mar 19, 2020

Artificial solid fog material creates pleasant laser light

Posted by in categories: computing, nanotechnology, space, transportation

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the material developed by an international research team led by Kiel University. The scientists assume that they have thereby created a central basis for bringing laser light into a broad application range. Based on a boron-nitrogen compound, they developed a special three-dimensional nanostructure that scatters light very strongly and hardly absorbs it. Irradiated with a laser, the material emits uniform lighting, which, depending on the type of laser, is much more efficient and powerful than LED light. Thus, lamps for car headlights, projectors or room lighting with laser light could become smaller and brighter in the future. The research team presents their results in the current issue of the renowned journal Nature Communications, which was published today.

More light in the smallest space

In research and industry, has long been considered the “next generation” of light sources that could even exceed the efficiency of LEDs (light-emitting diode). “For very bright or a lot of light, you need a large number of LEDs and thus space. But the same amount of light could also be obtained with a single diode that is one-thousandth smaller,” Dr. Fabian Schütt emphasizes the potential. The materials scientist from the working group “Functional Nanomaterials” at Kiel University is the first author of the study, which involves other researchers from Germany, England, Italy, Denmark and South Korea.

Mar 19, 2020

A Surprising Breakthrough Will Allow Tiny Implants to Fix – and Even Upgrade – Your Body

Posted by in categories: biotech/medical, computing

Known as an ion-gated transistor (IGT), the new class of technology effectively melds electronics with molecules of human skin.


But wait, you no longer need any of those, since you recently got one of the new biomed implants — a device that integrates seamlessly with body tissues, because of a watershed breakthrough that happened in the early 2020s. It’s an improved biological transistor driven by electrically charged particles that move in and out of your own cells. Like insulin pumps and cardiac pacemakers, the medical implants of the future will go where they are needed, on or inside the body.

Continue reading “A Surprising Breakthrough Will Allow Tiny Implants to Fix – and Even Upgrade – Your Body” »

Mar 19, 2020

Intel to Release Neuromorphic-Computing System

Posted by in categories: business, computing, government, neuroscience

Intel Corp. is releasing an experimental research system for neuromorphic computing, a cutting-edge method that simulates the way human brains work to perform computations faster, using significantly less energy.

The system, called Pohoiki Springs, will be made available this month over the cloud to members of the Intel Neuromorphic Research Community, which includes academic researchers, government labs and about a dozen companies such as Accenture PLC and Airbus SE.

Others, including International Business Machines Corp., are also researching the technique.

Mar 19, 2020

The imitation game: Scientists describe and emulate new quantum state of entangled photons

Posted by in categories: computing, engineering, information science, nanotechnology, quantum physics

:oooo.


A research team from ITMO University, with the help of colleagues from MIPT (Russia) and Politecnico di Torino (Italy), has predicted a novel type of topological quantum state of two photons. Scientists have also applied a new, affordable experimental method for testing this prediction. The method relies on an analogy: Instead of expensive experiments with quantum systems of two or more entangled photons, the researchers have used resonant electric circuits of higher dimensionality described by similar equations. The obtained results can be useful for the engineering of optical chips and quantum computers without the need for expensive experiments. The research was published in Nature Communications.

Light plays a key role in modern information technologies: With its help, information is transmitted over large distances via optical fibers. In the future, scientists anticipate the invention of optical chips and computers that process information with the help of photons—light quanta—instead of electrons, as it is done today. This will decrease energy consumption, while also increasing the capabilities of computers. However, to turn these predictions into reality, fundamental and applied research of light behavior at the micro- and nanoscale is needed.

Continue reading “The imitation game: Scientists describe and emulate new quantum state of entangled photons” »

Mar 18, 2020

Ubuntu 20.04 LTS A Nice Upgrade For AMD Ryzen Owners From 18.04 LTS

Posted by in category: computing

:ooooo.


Phoronix is the leading technology website for Linux hardware reviews, open-source news, Linux benchmarks, open-source benchmarks, and computer hardware tests.

Mar 18, 2020

A new computer chip mimics the neurocircuitry of our noses to smell

Posted by in categories: computing, neuroscience

It draws inspiration from the structure and electrical activity of the brain to distinguish between odors.

Mar 17, 2020

This Library In Minecraft Was Built By 24 People To Fight Censorship Across The World

Posted by in categories: computing, government, surveillance

Love this convergence of metaverse and fighting censorship with style. Wonder when Microsoft will start getting pressure about this or other kinds of content.


Most of us live in countries where freedom of speech is considered a fundamental human right and it would be hard to imagine living in a different state than that. However, not all of us are blessed with this sometimes overlooked right as there are a number of countries in this world where governments actively censor their citizens, especially those whose profession is to report facts. Journalists.

Continue reading “This Library In Minecraft Was Built By 24 People To Fight Censorship Across The World” »

Mar 16, 2020

A new theory of magnetar formation

Posted by in categories: computing, space

Magnetars are neutron stars endowed with the strongest magnetic fields observed in the universe, but their origin remains controversial. In a study published in Science Advances, a team of scientists from CEA, Saclay, the Max Planck Institute for Astrophysics (MPA), and the Institut de Physique du Globe de Paris developed a new and unprecedentedly detailed computer model that can explain the genesis of these gigantic fields through the amplification of pre-existing weak fields when rapidly rotating neutron stars are born in collapsing massive stars. The work opens new avenues to understand the most powerful and most luminous explosions of such stars.

Magnetars: what are they?

Neutron stars are compact objects containing one to two within a radius of about 12 kilometers. Among them, magnetars are characterized by eruptive emission of X-rays and gamma rays. The energy associated with these bursts of intense radiation is probably related to ultra–. Magnetars should thus spin down faster than other neutron stars due to enhanced magnetic braking, and measurements of their rotation period evolution have confirmed this scenario. We thus infer that magnetars have a dipole magnetic field of the order of 1015 Gauss (G), i.e., up to 1000 times stronger than typical neutron stars! While the existence of these tremendous magnetic fields is now well established, their origin remains controversial.