Menu

Blog

Archive for the ‘computing’ category: Page 526

Mar 21, 2020

Innovative new fabrication approach for reprogrammable photonic circuits

Posted by in categories: computing, quantum physics, solar power, sustainability

Modern society relies on technologies with electronic integrated circuits (IC) at their heart, but these may prove to be less suitable in future applications such as quantum computing and environmental sensing. Photonic integrated circuits (PICs), the light-based equivalent of electronic ICs, are an emerging technology field that can offer lower energy consumption, faster operation, and enhanced performance. However, current PIC fabrication methods lead to large variability between fabricated devices, resulting in limited yield, long delays between the conceptual idea and the working device, and lack of configurability. Researchers at Eindhoven University of Technology have devised a new process for the fabrication of PICs that addresses these critical issues, by creating novel reconfigurable PICs in the same way that the emergence of programmable logic devices transformed IC production in the 1980s.

Photonic integrated circuits (PICs) – the light-based equivalent of electronic ICs—carry signals via visible and . Optical materials with adjustable refractive index are essential for reconfigurable PICs as they allow for more accurate manipulation of light passing through the materials, leading to better PIC performance.

Current programmable PIC concepts suffer from issues such as volatility and/or high optical signal losses—both of which negatively affect a material’s ability to keep its programmed state. Using hydrogenated (a-Si: H), a material used in thin-film silicon , and the associated Staebler-Wronski effect (SWE), which describes how the of a-Si: H can be changed via light exposure or heating, researchers at Eindhoven University of Technology have designed a new PIC fabrication process that addresses the shortfalls of current techniques and could lead to the emergence of universal programmable PICs.

Mar 21, 2020

Two Probability Pioneers Just Won the Math Version of the Nobel Prize

Posted by in categories: computing, mathematics

Two retired professors are sharing the mathematics version of the Nobel Prize for their lifelong contributions to the changing nature of math in the computing age. Both Hillel Furstenberg and Gregory Margulis spent decades applying ideas from probability theory to different kinds of discrete mathematics in order to shake loose new ways to solve seemingly intractable problems. The Abel Prize, awarded since just 2003, honors career mathematical accomplishments with a prize of about $700,000.

Wait—there’s not a Nobel Prize for mathematics? It’s true, and although you may have heard a lascivious story to explain why, no one really knows for sure.

Mar 21, 2020

Valve president Gabe Newell: ‘We’re way closer to The Matrix than people realize’

Posted by in categories: computing, neuroscience, virtual reality

Think we’re far off from The Matrix? Gabe Newell says you should think again.

In a rare interview with IGN ahead of next week’s release of Half-Life: Alyx, Newell reasoned that more advanced forms of VR might not be too far out. “We’re way closer to The Matrix than people realize,” he stated. “It’s not going to be ‘The Matrix’, The Matrix is a movie and it misses all the interesting technical subtleties and just how weird the post-brain-computer interface world is going to be. But it’s going to have a huge impact on the kinds of experiences that we can create for people.”

Mar 20, 2020

Honeywell says it will soon release ‘the most powerful quantum computer yet’

Posted by in categories: computing, quantum physics

Firm says ion-trap technology overcomes main obstacles to integrating qubits.

Mar 20, 2020

This is the first-ever iPad with which Apple has introduced trackpad support

Posted by in categories: computing, electronics

Apple’s latest iPad — the iPad Pro — is its most-powerful and comes with several first-time features. This is the first iPad with a a dual-camera, a trackpad, a Magic keyboard and LiDAR scanner. It is the most-powerful iPad Apple has made and is set to give tough competition to a lot of Windows-powered laptops. Here are 15 things you should know about the new iPad Pro:

Mar 20, 2020

Scientists Develop World’s First ‘Unhackable’ Encryption System

Posted by in categories: computing, encryption

Circa 2019


Makers of Titanic claimed that it is ‘unsinkable’ and we know how it went down in history. Now, researchers from the University of St Andrews have claimed to have developed an ‘unhackable’ encryption system that stores data in the form of light.

The chip designed by the researchers generates one-time-only key when data is sent through it. The data is stored as light and passed through a specially designed chip that bends and refracts the light to scramble the information.

Continue reading “Scientists Develop World’s First ‘Unhackable’ Encryption System” »

Mar 20, 2020

Why Intel Is Investing In Neuromorphic Computing

Posted by in categories: computing, quantum physics

The neuromorphic approach is still in deep research, and is being investigated by Intel, IBM, HPE, MIT, Purdue, Stanford and others. It will likely be deployed in production solutions within the next three to five years. Like quantum computing, there is potential for a future solution than could be 1,000–10,000 times more efficient than the digital processing approach that is currently in vogue. But also like quantum, neuromorphic computing will require a lot of research to reach fruition. When it does, it will likely only be applied to a specific set of challenges. I will continue to watch with interest.


Analyst Karl Freund takes a look at Intel’s recent announcements in the realm of neuromorphic computing.

Mar 19, 2020

Stretchable supercapacitors to power tomorrow’s wearable devices

Posted by in categories: biotech/medical, computing, engineering, wearables

Researchers at Duke University and Michigan State University have engineered a novel type of supercapacitor that remains fully functional even when stretched to eight times its original size. It does not exhibit any wear and tear from being stretched repeatedly and loses only a few percentage points of energy performance after 10,000 cycles of charging and discharging.

The researchers envision the being part of a power-independent, stretchable, flexible electronic system for applications such as wearable electronics or .

The results appear online March 19 in Matter, a journal from Cell Press. The research team includes senior author Changyong Cao, assistant professor of packaging, and electrical and computer engineering at Michigan State University (MSU), and senior author Jeff Glass, professor of electrical and computer engineering at Duke. Their co-authors are doctoral students Yihao Zhou and Qiwei Han and research scientist Charles Parker from Duke, as well as Ph.D. student Yunteng Cao from the Massachusetts Institutes of Technology.

Mar 19, 2020

Artificial solid fog material creates pleasant laser light

Posted by in categories: computing, nanotechnology, space, transportation

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the material developed by an international research team led by Kiel University. The scientists assume that they have thereby created a central basis for bringing laser light into a broad application range. Based on a boron-nitrogen compound, they developed a special three-dimensional nanostructure that scatters light very strongly and hardly absorbs it. Irradiated with a laser, the material emits uniform lighting, which, depending on the type of laser, is much more efficient and powerful than LED light. Thus, lamps for car headlights, projectors or room lighting with laser light could become smaller and brighter in the future. The research team presents their results in the current issue of the renowned journal Nature Communications, which was published today.

More light in the smallest space

In research and industry, has long been considered the “next generation” of light sources that could even exceed the efficiency of LEDs (light-emitting diode). “For very bright or a lot of light, you need a large number of LEDs and thus space. But the same amount of light could also be obtained with a single diode that is one-thousandth smaller,” Dr. Fabian Schütt emphasizes the potential. The materials scientist from the working group “Functional Nanomaterials” at Kiel University is the first author of the study, which involves other researchers from Germany, England, Italy, Denmark and South Korea.

Mar 19, 2020

A Surprising Breakthrough Will Allow Tiny Implants to Fix – and Even Upgrade – Your Body

Posted by in categories: biotech/medical, computing

Known as an ion-gated transistor (IGT), the new class of technology effectively melds electronics with molecules of human skin.


But wait, you no longer need any of those, since you recently got one of the new biomed implants — a device that integrates seamlessly with body tissues, because of a watershed breakthrough that happened in the early 2020s. It’s an improved biological transistor driven by electrically charged particles that move in and out of your own cells. Like insulin pumps and cardiac pacemakers, the medical implants of the future will go where they are needed, on or inside the body.

Continue reading “A Surprising Breakthrough Will Allow Tiny Implants to Fix – and Even Upgrade – Your Body” »