Menu

Blog

Archive for the ‘computing’ category: Page 469

Dec 12, 2020

Energy-efficient magnetic RAM: A new building block for spintronic technologies

Posted by in categories: computing, particle physics

Researchers at Pohang University of Science and Technology (POSTECH) and Seoul National University in South Korea have demonstrated a new way to enhance the energy efficiency of a non-volatile magnetic memory device called SOT-MRAM. Published in Advanced Materials, this finding opens up a new window of exciting opportunities for future energy-efficient magnetic memories based on spintronics.

In modern computers, the (RAM) is used to store information. The SOT-MRAM (spin-orbit torque magnetic RAM) is one of the leading candidates for the next-generation memory technologies that aim to surpass the performance of various existing RAMs. The SOT-MRAM may operate faster than the fastest existing RAM (SRAM) and maintain information even after the electric is powered off whereas all fast RAMs existing today lose information as soon as the supply is powered off. The present level of the SOT-MRAM technology falls short of being satisfactory, however, due to its high energy demand; it requires large energy supply (or large current) to write information. Lowering the energy demand and enhancing the energy efficiency is an outstanding problem for the SOT-MRAM.

In the SOT-MRAM, magnetization directions of tiny magnets store information and writing amounts to change the magnetization directions to desired directions. The magnetization direction change is achieved by a special physics phenomenon called SOT that modifies the magnetization direction when a current is applied. To enhance the energy efficiency, soft magnets are ideal material choice for the tiny magnets since their magnetization directions can be easily alterned by a small current. Soft magnets are bad choice for the safe storage of information since their magnetization direction may be altered even when not intended—due to thermal noise or other noise. For this reason, most attempts to build the SOT-MRAM adopt hard magnets, because they magnetize very strongly and their magnetization direction is not easily altered by noise. But this material choice inevitably makes the energy efficiency of the SOT-MRAM poor.

Dec 11, 2020

Scientists suggest US embassies were hit with high-power microwaves – here’s how the weapons work

Posted by in categories: biotech/medical, computing, military

The mystery ailment that has afflicted U.S. embassy staff and CIA officers off and on over the last four years in Cuba, China, Russia and other countries appears to have been caused by high-power microwaves, according to a report released by the National Academies. A committee of 19 experts in medicine and other fields concluded that directed, pulsed radiofrequency energy is the “most plausible mechanism” to explain the illness, dubbed Havana syndrome.

The report doesn’t clear up who targeted the embassies or why they were targeted. But the technology behind the suspected weapons is well understood and dates back to the Cold War arms race between the U.S. and the Soviet Union. High-power microwave weapons are generally designed to disable electronic equipment. But as the Havana syndrome reports show, these pulses of energy can harm people, as well.

Continue reading “Scientists suggest US embassies were hit with high-power microwaves – here’s how the weapons work” »

Dec 11, 2020

Physicists use antiferromagnetic rust to carry information over long distances at room temperature

Posted by in categories: computing, mobile phones, particle physics, quantum physics

Be it with smartphones, laptops, or mainframes: The transmission, processing, and storage of information is currently based on a single class of material—as it was in the early days of computer science about 60 years ago. A new class of magnetic materials, however, could raise information technology to a new level. Antiferromagnetic insulators enable computing speeds that are a thousand times faster than conventional electronics, with significantly less heating. Components could be packed closer together and logic modules could thus become smaller, which has so far been limited due to the increased heating of current components.

Information transfer at room temperature

So far, the problem has been that the information transfer in antiferromagnetic insulators only worked at low temperatures. But who wants to put their smartphones in the freezer to be able to use it? Physicists at Johannes Gutenberg University Mainz (JGU) have now been able to eliminate this shortcoming, together with experimentalists from the CNRS/Thales lab, the CEA Grenoble, and the National High Field Laboratory in France as well as theorists from the Center for Quantum Spintronics (QuSpin) at the Norwegian University of Science and Technology. “We were able to transmit and process information in a standard antiferromagnetic insulator at room temperature—and to do so over long enough distances to enable information processing to occur”, said JGU scientist Andrew Ross. The researchers used iron oxide (α-Fe2O3), the main component of rust, as an antiferromagnetic , because iron oxide is widespread and easy to manufacture.

Dec 11, 2020

Apple is now building the chip it needs to ditch Qualcomm like it ditched Intel

Posted by in category: computing

Apple modems are coming.


Would an Apple modem be better, or just less reliance on Qualcomm?

Dec 10, 2020

Organ-on-a-chip: recent breakthroughs and future prospects

Posted by in categories: biotech/medical, computing, engineering

The organ-on-a-chip (OOAC) is in the list of top 10 emerging technologies and refers to a physiological organ biomimetic system built on a microfluidic chip. Through a combination of cell biology, engineering, and biomaterial technology, the microenvironment of the chip simulates that of the organ in terms of tissue interfaces and mechanical stimulation. This reflects the structural and functional characteristics of human tissue and can predict response to an array of stimuli including drug responses and environmental effects. OOAC has broad applications in precision medicine and biological defense strategies. Here, we introduce the concepts of OOAC and review its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs. We further discuss existing challenges and provide future perspectives for its application.

Dec 10, 2020

Black Hole Jets Could Be Fueled by Strange ‘Negative Energy’, Astronomers Find

Posted by in categories: computing, cosmology, particle physics

When a black hole is actively feeding, something strange can be observed: enormously powerful jets of plasma shoot from its poles, at velocities approaching light speed.

Given the intense gravitational interactions at play, exactly how those jets form is a mystery. But now, using computer simulations, a team of physicists has hit upon an answer — particles seeming to have “negative energy” extract energy from the black hole and redirect it to the jets.

And this theory has, for the first time, united two different and seemingly irreconcilable theories about how energy can be extracted from a black hole.

Dec 10, 2020

Simulating subatomic physics on a quantum computer

Posted by in categories: computing, quantum physics

Scientists show how quantum computing could be a game-changer in our understanding of quantum processes.

Dec 10, 2020

Supernova Surprise Creates Elemental Mystery – Most Important Reaction in the Universe Can Get a Huge and Unexpected Boost

Posted by in categories: computing, cosmology

Michigan State University researchers have discovered that one of the most important reactions in the universe can get a huge and unexpected boost inside exploding stars known as supernovae.

This finding also challenges ideas behind how some of the Earth’s heavy elements are made. In particular, it upends a theory explaining the planet’s unusually high amounts of some forms, or isotopes, of the elements ruthenium and molybdenum.

“It’s surprising,” said Luke Roberts, an assistant professor at the Facility for Rare Isotope Beams and the Department of Physics and Astronomy, at MSU. Roberts implemented the computer code that the team used to model the environment inside a supernova. “We certainly spent a lot of time making sure the results were correct.”

Dec 9, 2020

New tools ‘turn on’ quantum gases of ultracold molecules

Posted by in categories: chemistry, computing, quantum physics

JILA researchers have developed tools to “turn on” quantum gases of ultracold molecules, gaining control of long-distance molecular interactions for potential applications such as encoding data for quantum computing and simulations.

The new scheme for nudging a down to its lowest energy state, called quantum degeneracy, while suppressing that break up finally makes it possible to explore exotic quantum states in which all the molecules interact with one another.

The research is described in the Dec. 10 issue of Nature. JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

Dec 9, 2020

Discovery suggests new promise for nonsilicon computer transistors

Posted by in categories: computing, materials

For decades, one material has so dominated the production of computer chips and transistors that the tech capital of the world—Silicon Valley—bears its name. But silicon’s reign may not last forever.

MIT researchers have found that an alloy called InGaAs (indium gallium arsenide) could hold the potential for smaller and more energy efficient . Previously, researchers thought that the performance of InGaAs transistors deteriorated at small scales. But the new study shows this apparent deterioration is not an intrinsic property of the material itself.

The finding could one day help push computing power and efficiency beyond what’s possible with silicon. “We’re really excited,” said Xiaowei Cai, the study’s lead author. “We hope this result will encourage the community to continue exploring the use of InGaAs as a channel material for transistors.”