Toggle light / dark theme

A Peek Into the Quantum Realm: MIT Physicists Generate the First Snapshots of Fermion Pairs

The images shed light on how electrons form superconducting pairs that glide through materials without friction.

When your laptop or smartphone heats up, it’s due to energy that’s lost in translation. The same goes for power lines that transmit electricity between cities. In fact, around 10 percent of the generated energy is lost in the transmission of electricity. That’s because the electrons that carry electric charge do so as free agents, bumping and grazing against other electrons as they move collectively through power cords and transmission lines. All this jostling generates friction, and, ultimately, heat.

But when electrons pair up, they can rise above the fray and glide through a material without friction. This “superconducting” behavior occurs in a range of materials, though at ultracold temperatures. If these materials can be made to superconduct closer to room temperature, they could pave the way for zero-loss devices, such as heat-free laptops and phones, and ultra-efficient power lines. But first, scientists will have to understand how electrons pair up in the first place.

Apple Vision Pro to Feature Custom-Designed Low Latency DRAM Chip Supplied by SK Hynix

Apple’s Vision Pro headset will use a new type of dynamic random access memory, or DRAM, that has been custom designed to support Apple’s R1 input processing chip, reports The Korea Herald.

Apple Vision Pro is powered by a pair of chips. The main processor is the M2, which is responsible for processing content, running the visionOS operating system, executing computer vision algorithms, and providing graphical content.

Sound is manipulated for quantum information processing

“A phonon represents the collective motion of an astronomical number of atoms,” Cleland says. “And they all have to work together in order to obey quantum mechanics. There was this question in the back of my mind, will this really work? We tried it, and it’s kind of amazing, but it really does work.”

Splitting a phonon

The team created single phonons as propagating wavepackets on the surface of a lithium niobate chip. The phonons were created and detected using two superconducting qubits, which were located on a separate chip, and coupled to the lithium niobate chip through the air. The two superconducting qubits were located either of the chip, with a two-millimetre-long channel between them hosting the travelling phonons.

Five Dimensional Glass Discs Can Store Data for Upto 13.8 Billion Years

It’s estimated that humans are producing the equivalent of 10 million Blu-ray Discs of data per day – and all and zero of those have to be stored somewhere.

Now, UK researchers may have a solution: a five-dimensional (5D) digital data disc that can store 360 terabytes of data for about 13.8 billion years.

To create the data discs, scientists at the University of Southampton used a process called femtosecond laser writing, which creates tiny discs of glass using ultrafast lasers that generate short and intense pulses of light.

Large collaboration yields unprecedented ‘live’ view into the brain’s complexity

Brain tissue is one of the most intricate tissue specimens that scientists have arguably ever dealt with. Packed with an immeasurable amount of information, the human brain is the most sophisticated computational device with its network of around 86 billion neurons.

Understanding such complexity is a difficult task, and therefore making progress requires technologies to unravel the tiny, taking place in the brain at microscopic scales. Imaging is therefore an enabling tool in neuroscience.

The new imaging and virtual reconstruction technology developed by Johann Danzl’s group, at the Institute of Science and Technology Austria (ISTA), is a big leap in imaging and is aptly named LIONESS—Live Information Optimized Nanoscopy Enabling Saturated Segmentation. Their work has been published in Nature Methods.

Time Reversal Photonics Experiment Resolves Quantum Paradox

It seems quantum mechanics and thermodynamics cannot be true simultaneously. In a new publication, University of Twente researchers use photons in an optical chip to demonstrate how both theories can be true at the same time.

In quantum mechanics, time can be reversed and information is always preserved. That is, one can always find back the previous state of particles. It was long unknown how this could be true at the same time as thermodynamics. There, time has a direction and information can also be lost. “Just think of two photographs that you put in the sun for too long, after a while you can no longer distinguish them,” explains author Jelmer Renema.

There was already a theoretical solution to this quantum puzzle and even an experiment with atoms, but now the University of Twente (UT) researchers have also demonstrated it with photons. “Photons have the advantage that it is quite easy to reverse time with them,” explains Renema. In the experiment, the researchers used an optical chip with channels through which the photons could pass. At first, they could determine exactly how many photons there were in each channel, but after that, the photons shuffled positions.

New ‘light-structure’ technique could solve some of quantum computing’s biggest challenges

“I find it totally amazing that it is possible at all to build these light structures.”

A Ph.D. candidate at has developed an innovative technique for creating the elementary building blocks of a future quantum computer or internet in a more controlled manner, opening up a potential solution to many of the challenges along the road to this long-sought technology.

Petr Steindl’s doctoral thesis, which he defended last week as the final step in his Ph.D. program at Leiden University in Germany, explores a new technique for generating photons using quantum dots and microcavities.

Mark “Superhero Copycat” Zuckerberg

A better world without Facebook and all its negative impacts would be a significant step forward. Facebook’s dominance and influence have often been associated with issues such as privacy breaches, the spread of misinformation, and the erosion of real social connections. By breaking free from Facebook’s grip, we can foster a healthier online environment that prioritizes privacy, genuine interactions, and reliable information. It is time to envision a world where social media platforms serve as catalysts for positive change, promoting authentic communication and meaningful connections among individuals.

(Image credit: Adobe Stock)

Mark Zuckerberg, the co-founder of Facebook (now Meta), recently celebrated reaching 100 million users in just five days with his new Twitter-like platform called Threads. However, this achievement doesn’t impress me much. Instead, it highlights Zuckerberg’s tendency to imitate rather than innovate.

While I used to admire him, I now realize that he doesn’t belong in the same league as my true idols. Comparing the 100 million sign-ups for ChatGPT to the 100 million Threads users is simply absurd.

/* */