Menu

Blog

Archive for the ‘computing’ category: Page 401

Oct 22, 2021

New photonic chip for isolating light may be key to miniaturizing quantum devices

Posted by in categories: computing, particle physics, quantum physics

Light offers an irreplaceable way to interact with our universe. It can travel across galactic distances and collide with our atmosphere, creating a shower of particles that tell a story of past astronomical events. Here on earth, controlling light lets us send data from one side of the planet to the other.

Given its broad utility, it’s no surprise that light plays a critical role in enabling 21st century quantum information applications. For example, scientists use to precisely control atoms, turning them into ultra-sensitive measures of time, acceleration, and even gravity. Currently, such early quantum technology is limited by size—state-of-the-art systems would not fit on a dining room table, let alone a chip. For practical use, scientists and engineers need to miniaturize , which requires re-thinking certain components for harnessing light.

Now IQUIST member Gaurav Bahl and his research group have designed a simple, compact photonic circuit that uses to rein in light. The new study, published in the October 21 issue of the journal Nature Photonics, demonstrates a powerful way to isolate, or control the directionality of light. The team’s measurements show that their approach to isolation currently outperforms all previous on-chip alternatives and is optimized for compatibility with atom-based sensors.

Oct 21, 2021

Hydroponics made Fujitsu

Posted by in categories: business, computing, finance, food, sustainability

Fijitsu retrofitted one of it’s clean rooms in a vertical farm. The project was so successful, they discovered they could enter a new market segment and sell the systems themselves. I definately want one.

Like the giant monolith in Stanley Kubrick’s 2,001 this new head of lettuce is simultaneously a product of this factory’s past and the future. Fujitsu is a space-age R&D innovator with sprawling, specialized factories. But several of its facilities, including this one, went dark when the company tightened its belt and reorganized its product lines after the 2008 global financial crisis. Now in the aftermath, it has retrofitted this facilities to serve tomorrow’s vegetable consumers, who will pay for a better-than-organic product, and who enjoy a bowl of iceberg more if they know it was monitored by thousands of little sensors.


Like the giant monolith in Stanley Kubrick’s 2001, this new head of lettuce is simultaneously a product of this factory’s past and the future. Fujitsu is a space-age R&D innovator with sprawling, specialized factories. But several of its facilities, including this one, went dark when the company tightened its belt and reorganized its product lines after the 2008 global financial crisis. Now in the aftermath, it has retrofitted this facilities to serve tomorrow’s vegetable consumers, who will pay for a better-than-organic product, and who enjoy a bowl of iceberg more if they know it was monitored by thousands of little sensors.

Continue reading “Hydroponics made Fujitsu” »

Oct 20, 2021

Brain-Computer Interfaces Evolve to Help People With Paralysis

Posted by in categories: computing, neuroscience

BCIs stands out as one of the most promising assistive technologies.

Full Story:

Continue reading “Brain-Computer Interfaces Evolve to Help People With Paralysis” »

Oct 19, 2021

Experiments reveal formation of a new state of matter: Electron quadruplets

Posted by in categories: biotech/medical, computing, quantum physics

The central principle of superconductivity is that electrons form pairs. But can they also condense into foursomes? Recent findings have suggested they can, and a physicist at KTH Royal Institute of Technology today published the first experimental evidence of this quadrupling effect and the mechanism by which this state of matter occurs.

Reporting today in Nature Physics, Professor Egor Babaev and collaborators presented evidence of fermion quadrupling in a series of experimental measurements on the iron-based material, Ba1−x Kx Fe2As2. The results follow nearly 20 years after Babaev first predicted this kind of phenomenon, and eight years after he published a paper predicting that it could occur in the material.

The pairing of electrons enables the quantum state of superconductivity, a zero-resistance state of conductivity which is used in MRI scanners and quantum computing. It occurs within a material as a result of two electrons bonding rather than repelling each other, as they would in a vacuum. The phenomenon was first described in a theory by, Leon Cooper, John Bardeen and John Schrieffer, whose work was awarded the Nobel Prize in 1972.

Oct 19, 2021

Dr. Antonio Giordano, MD, Ph.D. — President and Founder, Sbarro Health Research Organization

Posted by in categories: biotech/medical, computing, genetics, health, neuroscience

Integrated And Cross-Disciplinary Research Focused on Diagnosing, Treating And Curing Cancers — Dr. Antonio Giordano MD, PhD, President & Founder, Sbarro Health Research Organization.


Dr. Antonio Giordano, MD, Ph.D., (https://www.drantoniogiordano.com/) is President and Founder of the Sbarro Health Research Organization (https://www.shro.org/), which conducts research to diagnose, treat and cure cancer, but also has diversified into research beyond oncology, into the areas of cardiovascular disease, diabetes and other chronic illnesses.

Continue reading “Dr. Antonio Giordano, MD, Ph.D. — President and Founder, Sbarro Health Research Organization” »

Oct 19, 2021

Physics Experiment Reveals Formation of a New State of Matter — Breaks Time-Reversal Symmetry

Posted by in categories: biotech/medical, computing, quantum physics

The central principle of superconductivity is that electrons form pairs. But can they also condense into foursomes? Recent findings have suggested they can, and a physicist at KTH Royal Institute of Technology today published the first experimental evidence of this quadrupling effect and the mechanism by which this state of matter occurs.

Reporting in Nature Physics, Professor Egor Babaev and collaborators presented evidence of fermion quadrupling in a series of experimental measurements on the iron-based material, Ba1−xKxFe2As2. The results follow nearly 20 years after Babaev first predicted this kind of phenomenon, and eight years after he published a paper predicting that it could occur in the material.

The pairing of electrons enables the quantum state of superconductivity, a zero-resistance state of conductivity which is used in MRI scanners and quantum computing. It occurs within a material as a result of two electrons bonding rather than repelling each other, as they would in a vacuum. The phenomenon was first described in a theory by, Leon Cooper, John Bardeen and John Schrieffer, whose work was awarded the Nobel Prize in 1972.

Oct 19, 2021

Alibaba Just Unveiled One of China’s Most Advanced Chips

Posted by in categories: business, computing

Alibaba Group Holding Ltd. unveiled a new server chip that’s based on advanced 5-nanometer technology, marking a milestone in China’s pursuit of semiconductor self-sufficiency.

The Chinese tech giant’s newest chip is based on micro-architecture provided by the SoftBank Group Corp.-owned Arm Ltd., according to a statement Tuesday. Alibaba, which is holding its annual cloud summit in Hangzhou, said the silicon will be put to use in its own data centers in the “near future” and will not be sold commercially, at least for now.

“Customizing our own server chips is consistent with our ongoing efforts toward boosting our computing capabilities with better performance and improved energy efficiency,” said Jeff Zhang, president of Alibaba Cloud Intelligence and head of Alibaba’s research arm Damo Academy. “We plan to use the chips to support current and future businesses across the Alibaba Group ecosystem.”

Oct 19, 2021

Ultrafast magnetism: Heating magnets, freezing time

Posted by in categories: computing, particle physics

Magnetic solids can be demagnetized quickly with a short laser pulse, and there are already so-called HAMR (Heat Assisted Magnetic Recording) memories on the market that function according to this principle. However, the microscopic mechanisms of ultrafast demagnetization remain unclear. Now, a team at HZB has developed a new method at BESSY II to quantify one of these mechanisms and they have applied it to the rare-earth element Gadolinium, whose magnetic properties are caused by electrons on both the 4f and the 5d shells. This study completes a series of experiments done by the team on nickel and iron-nickel alloys. Understanding these mechanisms is useful for developing ultrafast data storage devices.

New materials should make information processing more efficient, for example, through ultrafast spintronic devices that store data with less energy input. But to date, the microscopic mechanisms of ultrafast demagnetization are not fully understood. Typically, the process of demagnetization is studied by sending an ultrashort laser pulse to the sample, thereby heating it up, and then analyzing how the system evolves in the first picoseconds afterward.

Oct 18, 2021

Arm expands offerings in IoT, virtual hardware, and 5G

Posted by in categories: computing, economics, internet

Arm is releasing new chip design offerings in the internet of things (IoT), virtual hardware, and 5G sectors.

Cambridge, United Kingdom-based Arm designs the architecture that other licensed chip makers use to build their chips. Arm likes to make it easier for those licensees to come up with their applications and create a foundation for an IoT economy.

So the company said its Arm Total Solutions for IoT now delivers a full-stack solution to significantly accelerate the development and return-on-investment for IoT chip products. And Arm Virtual Hardware removes the need to develop on physical silicon, enabling software and hardware co-design and accelerating product design by up to two years, the company claimed.

Oct 17, 2021

IoT Evolution World Announces Winners of the 2021 IoT Edge Computing Excellence Awards

Posted by in categories: computing, space

IoT Evolution World magazine announced today the recipients of their 2021 IoT Edge Computing Excellence Awards. This award recognizes the companies emerging as leaders in the growing edge computing space…


“Innovation in edge computing is separating the good from the great, pretenders and contenders,” said Moe Nagle, Editorial Director for IoT Evolution. “In selecting the winners, it is easy to see why these companies and their solutions have risen to the top.”