Toggle light / dark theme

Intel Announce ‘Tunnel Falls’ Quantum Research Chip

Intel announced the next step on its road to quantum with the release of its latest quantum chip, a 12-qubit, silicon-based chip the company is calling “Tunnel Falls”. No, no, it’s okay, you can keep those greenbacks in your wallet: Intel isn’t in the commercialization phase yet. Instead, Tunnel Falls is meant to be a research test chip: it’s still a stepping stone towards the actual Quantum Processing Units of the future. Hopefully, those will be more like Intel’s own Tunnel Falls than Iran’s Amazon-based “quantum computing” technology.

“Tunnel Falls is Intel’s most advanced silicon spin qubit chip to date and draws upon the company’s decades of transistor design and manufacturing expertise. The release of the new chip is the next step in Intel’s long-term strategy to build a full-stack commercial quantum computing system. While there are still fundamental questions and challenges that must be solved along the path to a fault-tolerant quantum computer, the academic community can now explore this technology and accelerate research development.” says Jim Clarke, Intel’s director of Quantum Hardware.

While it may be underwhelming to know that Tunnel Falls is just a research test chip, it’s also an often overlooked necessity for any new technology. Before any work can be done within the quantum computers of the future, the algorithms, the learning and the how-to have to be started today. One issue with that is the difficulty in producing quantum computing hardware; there’s a reason such a small number of big companies — from Intel to Microsoft, IBM, IonQ, and Google — are actively developing quantum computing hardware.

Everywhere and nowhere: Metaverse leaders plan for data centers on a whole new scale

This article is part of a VB special issue. Read the full series here: Data centers in 2023: How to do more with less.

The metaverse was once pure science fiction, an idea of a sprawling online universe born 30 years ago in Neal Stephenson’s Snow Crash novel. But now it’s gone through a rebirth as a realistic destination for many industries. And so I asked some people how the metaverse will change data centers in the future.

First, it helps to reach an understanding of what the metaverse will be. Some see the metaverse as the next version of the internet, or the spatial web, or the 3D web, with a 3D animated foundation that resembles sci-fi movies like Steven Spielberg’s Ready Player One.

IBM Makes the Best Quantum Computer Open to Public

IBM in collaboration with UC Berkeley researchers announced a recent breakthrough experiment which indicates that quantum computers will soon surpass classical computers in practical tasks.

Now, the company is taking another major step that has never been done before by it. The company is making the 127-qubit quantum computer publicly available over IBM Cloud.

The IBM researchers measured the noise in each qubit and extrapolated their measurements to predict the system’s behaviour without noise. They successfully ran calculations involving all 127 qubits of the Eagle processor, marking the largest reported experiment of its kind.

Physicists developed faster algorithm for the simulation motion of microparticles in a plasma flow

Understanding the mechanisms of interaction between plasma and microparticles is of a critical importance in various fields, including astrophysics, microelectronics, and plasma medicine. A common experimental approach for studying interactions between plasma and microparticles is to place microparticles in a flowing plasma of a gas discharge. In order to achieve a more accurate understanding of the processes occurring in such systems, scientists need fast and efficient tools for calculating forces acting on microparticles in a plasma flow.

Typically, -physicists have to independently develop software tailored to a , which is a significant investment of time and resources. Existing open-source programs frequently encounter challenges related to installation, documentation, and sluggish performance. A group of scientists from the JIHT, the HSE and, MIPT have developed a novel solution: a fast, open-source code which is easy to install and extensively documented.

The outcome—OpenDust—performs ten times faster than existing analogues. In order to accelerate calculations, the algorithm uses multiple GPUs simultaneously.

Tiny device mimics human vision and memory abilities

Researchers have created a small device that “sees” and creates memories in a similar way to humans, in a promising step towards one day having applications that can make rapid, complex decisions such as in self-driving cars.

The neuromorphic invention is a enabled by a sensing element, doped indium oxide, that’s thousands of times thinner than a human hair and requires no external parts to operate.

RMIT University engineers in Australia led the work, with contributions from researchers at Deakin University and the University of Melbourne.

Eliminating Death Doesn’t Mean Life Will Get Boring

In my new Newsweek Op-Ed, I tackle a primary issue many people have with trying to stop aging and death via science. Hopefully this philosophical argument will allow more resources & support into the life extension field:


Philosophers often say if humans didn’t die, we’d be bored out of our minds. This idea, called temporal scarcity, argues the finitude of death is what makes life worth living. Transhumanists, whose most urgent goal is to use science to overcome biological death, emphatically disagree.

For decades, the question of temporal scarcity has been debated and analyzed in essays and books. But an original idea transhumanists are putting forth is reinvigorating the debate. It doesn’t discount temporal scarcity in biological humans; it discounts it in what humans will likely become in the future—cyborgs and digitized consciousnesses.

The traditional temporal scarcity argument against immortality imagines the human being remaining biologically the same as it has for tens of thousands of years. Yet the human race is already augmenting the human body with radical technology. Globally, over 200,000 people already have brain implants, and Silicon Valley companies like Elon Musk’s Neuralink are working on trying to get millions of us to become cyborgs.

A growing number of experts even believe by the end of the century, humans will likely have the ability to upload the brain and its consciousness into a computer. In the process, digitized people will overcome biological death and engage in far more complex ways of being, including grand new designs of consciousness and selfhood.