Menu

Blog

Archive for the ‘computing’ category: Page 290

Sep 9, 2022

Stretchable, self-powered bioelectronics mimic skin in form and function

Posted by in categories: biotech/medical, computing, engineering, health, nanotechnology

Skin-like electronics could seamlessly integrate with the body for applications in health monitoring, medication therapy, implantable medical devices, and biological studies.

With the help of the Polsky Center for Entrepreneurship and Innovation, Sihong Wang, an assistant professor of molecular engineering at the University of Chicago’s Pritzker School of Molecular Engineering, has secured patents for the building blocks of these novel devices.

Drawing on innovation in the fields of semiconductor physics, solid mechanics, and energy sciences, this work includes the creation of stretchable polymer semiconductors and transistor arrays, which provide exceptional electrical performance, high semiconducting properties, and mechanical stretchability. Additionally, Wang has developed triboelectric nanogenerators as a new technology for harvesting energy from a user’s motion—and designed the associated energy storage process.

Sep 8, 2022

Frustrated With Neuralink’s Slow Progress, Elon Musk Approaches Competitor

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

Neuralink cofounder and Tesla CEO Elon Musk allegedly approached Synchron, a company that manufactures chips that can be implanted in patient’s brains.

Sep 8, 2022

Cooler Atoms for Better Atomic Clocks

Posted by in categories: computing, particle physics, quantum physics

Over the last decade, improvements in optical atomic clocks have repeatedly led to devices that have broken records for their precision (see Viewpoint: A Boost in Precision for Optical Atomic Clocks). To achieve even better performance, physicists must find a way to cool the atoms in these clocks to lower temperatures, which would allow them to use shallower atom traps and reduce measurement uncertainty. Tackling this challenge, Xiaogang Zhang and colleagues at the National Institute of Standards and Technology, Colorado, have cooled a gas of ytterbium atoms to a record low temperature of a few tens of nanokelvin [1]. As well as enabling the next generation of optical atomic clocks, the researchers say that their technique could be used to cool atoms in neutral-atom quantum computers.

Divalent atoms such as ytterbium are especially suited to precision metrology, as their lack of net electronic spin makes them less sensitive than other species to environmental noise. These atoms can be cooled to the necessary sub-µK temperatures in several ways, but not all techniques are compatible with the requirements of high-precision clocks. For example, evaporative cooling, in which the most energetic atoms are removed, is time-consuming and depletes the atoms. Meanwhile, resolved sideband cooling chills the motion of the atoms only along the axis of the 1D optical trap, leaving their off-axis motion unaffected.

Zhang and colleagues cool their atoms using a laser tuned to ytterbium’s so-called clock transition, whose extremely narrow linewidth means that the atom can theoretically be cooled to below 10 nK. They demonstrate that the precision of a clock employing a shallow lattice trap enabled by such a temperature would not be limited by atoms tunneling between adjacent lattice sites, potentially allowing a measurement uncertainty below 10-19.

Sep 8, 2022

Samsung opens largest chip production line in South Korea

Posted by in categories: computing, electronics

South Korea’s Samsung Electronics has launched a new and its largest chip production line. The new factory was opened in Pyeongtaek, South Korea, 70 km from Seoul.

Here’s what we know

Despite the September 7 launch, the P3 line began operating as early as mid-summer. Samsung started trial production of NAND memory in July. The new facility uses ASML’s lithography machines. It is the dutch company, which is essentially a monopolist in the extreme ultraviolet lithography equipment market.

Sep 7, 2022

“Unlimited Possibilities” — New Law of Physics Could Predict Genetic Mutations

Posted by in categories: biological, computing, cosmology, genetics, information science, mathematics, physics

According to a University of Portsmouth study, a new physics law could allow for the early prediction of genetic mutations.

The study discovers that the second law of information dynamics, or “infodynamics,” behaves differently from the second law of thermodynamics. This finding might have major implications for how genomic research, evolutionary biology, computing, big data, physics, and cosmology develop in the future.

Lead author Dr. Melvin Vopson is from the University’s School of Mathematics and Physics. He states “In physics, there are laws that govern everything that happens in the universe, for example how objects move, how energy flows, and so on. Everything is based on the laws of physics. One of the most powerful laws is the second law of thermodynamics, which establishes that entropy – a measure of disorder in an isolated system – can only increase or stay the same, but it will never decrease.”

Sep 7, 2022

Researchers Uncover Method New Method to Boost Quantum Operation Sequences

Posted by in categories: computing, quantum physics

The Quantum Insider (TQI) is the leading online resource dedicated exclusively to Quantum Computing.

Sep 7, 2022

Why established and regulated industries are shifting to cloud services

Posted by in categories: biotech/medical, business, computing

Were you unable to attend Transform 2022? Check out all of the summit sessions in our on-demand library now! Watch here.

The last two years saw cloud technology heavily encouraged across almost every sector. For businesses wishing to thrive in the chaos of the pandemic, the move to cloud environments became a necessity amidst the shift to remote work and the frequent inability to access data centers.

As a result, more businesses than ever — including many in established industries such as manufacturing, retail and healthcare — have accelerated their adoption of cloud-first models and strategies. This approach is empowering these industries with more agility and efficiency in what has been a very uncertain time for the world and thus, for business.

Sep 6, 2022

Stable Diffusion: DALL-E 2 For Free, For Everyone!

Posted by in category: computing

❤️ Check out Lambda here and sign up for their GPU Cloud: https://lambdalabs.com/papers.

📝 The paper “High-Resolution Image Synthesis with Latent Diffusion Models” is available here:
https://ommer-lab.com/research/latent-diffusion-models/
https://github.com/mallorbc/stable-diffusion-klms-gui.

Continue reading “Stable Diffusion: DALL-E 2 For Free, For Everyone!” »

Sep 6, 2022

Photosynthesis copycat may improve solar cells

Posted by in categories: chemistry, computing, engineering, solar power, sustainability

A relatively new kind of semiconductor, layered atop a mirror-like structure, can mimic the way that leaves move energy from the sun over relatively long distances before using it to fuel chemical reactions. The approach may one day improve the efficiency of solar cells.

“Energy transport is one of the crucial steps for and conversion in solar cells,” said Bin Liu, a postdoctoral researcher in electrical and computer engineering and first author of the study in the journal Optica.

“We created a structure that can support hybrid light-matter mixture states, enabling efficient and exceptionally long-range .”

Sep 6, 2022

Scientists Wire Chip to Cockroaches’ Nervous System, Allow Them to Be Remote Controlled

Posted by in categories: computing, cyborgs, food

According to the researcher, the same technology could be applied to beetles and cicadas as well.

It’s a fun and futuristic vision: an army of remotely controlled cyborg insects that can infiltrate hard to reach locations or monitor crops.

But scientists will have to advance the tech carefully — nobody wants to risk a cyborg cockroach uprising.