Menu

Blog

Archive for the ‘computing’ category: Page 265

Jan 7, 2023

Quantum computers can break major encryption method, researchers claim

Posted by in categories: computing, encryption, quantum physics

It has long been known that one day quantum computers will probably be able to crack the RSA encryption method we use to keep data safe, but a team of researchers is now claiming it is already possible, while others say the results require more scrutiny.

Jan 7, 2023

The Most Unsettling Solutions to the Fermi Paradox With Stephen Webb

Posted by in categories: alien life, computing, existential risks

A discussion of the most unsettling solutions to the fermi paradox.
Skip the waitlist and invest in blue-chip art for the very first time by signing up for Masterworks: https://masterworks.art/eventhorizon.
Purchase shares in great masterpieces from artists like Pablo Picasso, Banksy, Andy Warhol, and more.
How Masterworks works:
–Create your account with your traditional bank account.
–Pick major works of art to invest in or our new blue-chip diversified art portfolio.
–Identify investment amount.
–Hold shares in works by Picasso or trade them in our secondary marketplace.
See important Masterworks disclosures: http://masterworks.com/cd.

2:33 Beginning.

Continue reading “The Most Unsettling Solutions to the Fermi Paradox With Stephen Webb” »

Jan 6, 2023

Yes, the Universe really is 100% reductionist in nature

Posted by in categories: computing, particle physics, space

In other words, what appears to be emergent to us today, with our present limitations of what its within our power to compute, may someday in the future be describable in purely reductionist terms. Many such systems that were once incapable of being described via reductionism have, with superior models (as far as what we choose to pay attention to) and the advent of improved computing power, now been successfully described in precisely a reductionist fashion. Many seemingly chaotic systems can, in fact, be predicted to whatever accuracy we arbitrarily choose, so long as enough computational resources are available.

Yes, we can’t rule out non-reductionism, but wherever we’ve been able to make robust predictions for what the fundamental laws of nature do imply for large-scale, complex structures, they’ve been in agreement with what we’ve been able to observe and measure. The combination of the known particles that make up the Universe and the four fundamental forces through which they interact has been sufficient to explain, from atomic to stellar scales and beyond, everything we’ve ever encountered in this Universe. The existence of systems that are too complex to predict with current technology is not an argument against reductionism.

Jan 6, 2023

Gallium: The liquid metal that could transform soft electronics

Posted by in categories: computing, wearables

Interest in gallium lagged in the past, partly because of the unfair association with toxic mercury, and partly because its tendency to form an oxide layer was seen as a negative. But with increased interest in flexible and, especially wearable electronics, many researchers are paying fresh attention.

To make bendable circuits with gallium, scientists form it into thin wires embedded between rubber or plastic sheets. These wires can connect tiny electronic devices such as computer chips, capacitors and antennas. The process creates a device that could wrap around an arm and be used to track an athlete’s motion, speed or vital signs, for instance, says Carmel Majidi, a mechanical engineer at Carnegie Mellon University.

Jan 6, 2023

What’s next for quantum computing

Posted by in categories: computing, quantum physics

This story is a part of MIT Technology Review’s What’s Next series, where we look across industries, trends, and technologies to give you a first look at the future

In 2023, progress in quantum computing will be defined less by big hardware announcements than by researchers consolidating years of hard work, getting chips to talk to one another, and shifting away from trying to make do with noise as the field gets ever more international in scope.

Jan 6, 2023

Government Scientists Discover Entirely New Kind of Quantum Entanglement in Breakthrough

Posted by in categories: computing, government, particle physics, quantum physics

Scientists at Brookhaven National Laboratory have uncovered an entirely new kind of quantum entanglement, a phenomenon that causes particles to become weirdly linked, even across vast cosmic distances, reports a new study. The discovery allowed them to capture an unprecedented glimpse of the bizarre world inside atoms, the tiny building blocks of matter.

The mind-bending research resolves a longstanding mystery about the nuclei of atoms, which contain particles called protons and neutrons, and could help shed light on topics ranging from quantum computing to astrophysics.

Jan 6, 2023

Crystal device could be used to build tiny particle accelerators

Posted by in categories: computing, particle physics

A chip-sized device can produce very intense light that could help in building tiny X-ray machines and particle accelerators.

Jan 5, 2023

Quantum computers may soon breach blockchain cryptography: Report

Posted by in categories: blockchains, computing, encryption, quantum physics

The method has not been tested on RSA-2048 but experts say it is theoretically possible.

Jan 5, 2023

Amazon to lay off 18,000 workers in largest tech company job cut

Posted by in categories: computing, economics, Elon Musk, sustainability, transportation

Yet, it is a small percentage of its workforce.

Amazon.com Inc., one of the largest technology companies in the world with presence in ecommerce, advertising, video streaming and cloud computing, has announced that it will be laying off 18,000 workers as the company copes with the economic downturn in the future, The Wall Street Journal.


Smith Collection/Gado/Getty Images.

Continue reading “Amazon to lay off 18,000 workers in largest tech company job cut” »

Jan 5, 2023

Quantum Breakthrough: Light Source Produces Two Entangled Light Beams

Posted by in categories: computing, encryption, neuroscience, quantum physics

One potential application: Enhancing the sensitivity of atomic magnetometers used to measure the alpha waves emitted by the human brain.

Scientists are increasingly seeking to discover more about quantum entanglement, which occurs when two or more systems are created or interact in such a manner that the quantum states of some cannot be described independently of the quantum states of the others. The systems are correlated, even when they are separated by a large distance. Interest in studying this kind of phenomenon is due to the significant potential for applications in encryption, communications, and quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.