Menu

Blog

Archive for the ‘computing’ category: Page 151

Dec 18, 2023

Giant skyrmion topological Hall effect appears in a two-dimensional ferromagnetic crystal at room temperature

Posted by in categories: computing, nanotechnology, particle physics

Researchers in China have produced a phenomenon known as the giant skyrmion topological Hall effect in a two-dimensional material using only a small amount of current to manipulate the skyrmions responsible for it. The finding, which a team at Huazhong University of Science and Technology in Hubei observed in a ferromagnetic crystal discovered in 2022, comes about thanks to an electronic spin interaction known to stabilize skyrmions. Since the effect was apparent at a wide range of temperatures, including room temperature, it could prove useful for developing two-dimensional topological and spintronic devices such as racetrack memory, logic gates and spin nano-oscillators.

Skyrmions are quasiparticles with a vortex-like structure, and they exist in many materials, notably magnetic thin films and multilayers. They are robust to external perturbations, and at just tens of nanometres across, they are much smaller than the magnetic domains used to encode data in today’s hard disks. That makes them ideal building blocks for future data storage technologies such as “racetrack” memories.

Skyrmions can generally be identified in a material by spotting unusual features (for example, abnormal resistivity) in the Hall effect, which occurs when electrons flow through a conductor in the presence of an applied magnetic field. The magnetic field exerts a sideways force on the electrons, leading to a voltage difference in the conductor that is proportional to the strength of the field. If the conductor has an internal magnetic field or magnetic spin texture, like a skyrmion does, this also affects the electrons. In these circumstances, the Hall effect is known as the skyrmion topological Hall effect (THE).

Dec 18, 2023

Q&A: Bringing virtual reality to nuclear and particle physics

Posted by in categories: computing, education, particle physics, virtual reality

Virtual reality, or VR, is not just for fun-filled video games and other visual entertainment. This technology, involving a computer-generated environment with objects that seem real, has found many scientific and educational applications as well.

Sean Preins, a doctoral student in the Department of Physics and Astronomy at the University of California, Riverside, has created a VR application called VIRTUE, for “Virtual Interactive Reality Toolkit for Understanding the EIC,” that is a game changer in how particle and nuclear physics data can be seen.

Made publicly available on Christmas Day, VIRTUE can be used to visualize experiments and simulated data from the upcoming Electron-Ion Collider, or EIC, a planned major new nuclear physics research facility at Brookhaven National Lab in Upton, New York. EIC will explore mysteries of the “strong force” that binds the atomic nucleus together. Electrons and ions, sped up to almost the speed of light, will collide with one another in the EIC.

Dec 17, 2023

Scientists just built a massive 1,000-qubit quantum chip, but why are they more excited about one 10 times smaller?

Posted by in categories: computing, quantum physics

The company announces its latest huge chip — but will now focus on developing smaller chips with a fresh approach to ‘error correction’


The second-largest quantum computing chip won’t be fitted into IBM’s next-generation System Two quantum computer. Instead, it will use three smaller 133-qubit chips with a much lower error rate.

Dec 17, 2023

Scientists create light-based semiconductor chip that will pave the way for 6G

Posted by in categories: computing, internet

By combining photonic and electronic components, scientists have built a prototype communications chip that can effectively access high enough radio frequency bandwidths for uses including advanced radar as well as 6G and 7G.

Dec 17, 2023

Lab Grown Brain Connected to a Microchip Recognized Human Voices

Posted by in categories: computing, neuroscience

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamathMore cool designs are on Amazon: https://amzn.to/3QFIrFXAlternatively, PayPal donations ca…

Dec 16, 2023

Intel, Samsung, and TSMC Demo 3D-Stacked Transistors

Posted by in categories: computing, futurism

Although the complementary FET is still as much as a decade away from commercialization, it’s clearly the future of CMOS.


The Big Three can now all make CFETs—next stop on the Moore’s Law roadmap.

Dec 16, 2023

Quantum Breakthrough: Caltech Scientists Unveil New Way To Erase Quantum Computer Errors

Posted by in categories: computing, quantum physics, sustainability

Future quantum computers are expected to revolutionize problem-solving in various fields, such as creating sustainable materials, developing new medications, and unraveling complex issues in fundamental physics. However, these pioneering quantum systems are currently more error-prone than the classical computers we use today. Wouldn’t it be nice if researchers could just take out a special quantum eraser and get rid of the mistakes?

Reporting in the journal Nature, a group of researchers led by Caltech is among the first to demonstrate a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as “erasure” errors.

“It’s normally very hard to detect errors in quantum computers, because just the act of looking for errors causes more to occur,” says Adam Shaw, co-lead author of the new study and a graduate student in the laboratory of Manuel Endres, a professor of physics at Caltech. “But we show that with some careful control, we can precisely locate and erase certain errors without consequence, which is where the name erasure comes from.”

Dec 16, 2023

Hong Kong develops world’s first antenna for ultra-secure 6G

Posted by in categories: computing, internet, physics

Researchers call it the ‘Holy Grail’ for physicists and engineers.


A group of researchers, led by Professor Chan Chi-hou from the City University of Hong Kong, created a special antenna that can control all five important aspects of electromagnetic waves using computer software.

The antenna, which they have named ’microwave universal metasurface antenna,’ is capable of dynamically, simultaneously, independently, and precisely manipulating all the essential properties of electromagnetic waves through software control.

Continue reading “Hong Kong develops world’s first antenna for ultra-secure 6G” »

Dec 15, 2023

Computational model captures the elusive transition states of chemical reactions

Posted by in categories: chemistry, computing

During a chemical reaction, molecules gain energy until they reach what’s known as the transition state — a point of no return from which the reaction must proceed.


MIT chemists have developed a computational model that can rapidly predict the structure of the transition state of a reaction (left structure), if it is given the structure of a reactant (middle) and product (right).

Dec 15, 2023

New way to charge batteries harnesses the power of ‘indefinite causal order’

Posted by in categories: chemistry, computing, engineering, quantum physics, sustainability

Batteries that exploit quantum phenomena to gain, distribute and store power promise to surpass the abilities and usefulness of conventional chemical batteries in certain low-power applications. For the first time, researchers, including those from the University of Tokyo, take advantage of an unintuitive quantum process that disregards the conventional notion of causality to improve the performance of so-called quantum batteries, bringing this future technology a little closer to reality.

When you hear the word “quantum,” the physics governing the subatomic world, developments in quantum computers tend to steal the headlines, but there are other upcoming quantum technologies worth paying attention to. One such item is the which, though initially puzzling in name, holds unexplored potential for sustainable energy solutions and possible integration into future electric vehicles. Nevertheless, these new devices are poised to find use in various portable and low-power applications, especially when opportunities to recharge are scarce.

At present, quantum batteries only exist as laboratory experiments, and researchers around the world are working on the different aspects that are hoped to one day combine into a fully functioning and practical application. Graduate student Yuanbo Chen and Associate Professor Yoshihiko Hasegawa from the Department of Information and Communication Engineering at the University of Tokyo are investigating the best way to charge a quantum battery, and this is where time comes into play. One of the advantages of quantum batteries is that they should be incredibly efficient, but that hinges on the way they are charged.