Menu

Blog

Archive for the ‘biotech/medical’ category: Page 835

Aug 11, 2022

A flexible, rod-driven soft robot for biomedical applications

Posted by in categories: biotech/medical, robotics/AI

Soft robots that can complete tasks with high efficiency, accuracy and precision could have numerous valuable applications. For instance, they could be introduced in medical settings, helping doctors to carry out complex surgical procedures or assisting elderly and vulnerable patients during rehabilitation.

Soft robots are more flexible and can deform more. This can result in an increased dexterity (i.e., better manual skills when completing tasks), as well as in a reduction of payload (i.e., the capacity to carry a load), because they can produce smaller forces than rigid robotic systems.

Researchers at National University of Singapore and Beijing Jiaotong University have recently developed a new rod-driven soft robot (RDSR) that operates through push and pull movements. This robot, presented in a paper published in the IEEE Robotics and Automation Letters, combines the mechanisms of two previously created by members of the research group.

Aug 10, 2022

Scientists hid encryption key for Wizard of Oz text in plastic molecules

Posted by in categories: 3D printing, biotech/medical, chemistry, computing, encryption

It’s “a revolutionary scientific advance in molecular data storage and cryptography.”


Scientists from the University of Texas at Austin sent a letter to colleagues in Massachusetts with a secret message: an encryption key to unlock a text file of L. Frank Baum’s classic novel The Wonderful Wizard of Oz. The twist: The encryption key was hidden in a special ink laced with polymers, They described their work in a recent paper published in the journal ACS Central Science.

When it comes to alternative means for data storage and retrieval, the goal is to store data in the smallest amount of space in a durable and readable format. Among polymers, DNA has long been the front runner in that regard. As we’ve reported previously, DNA has four chemical building blocks—adenine (A), thymine (T), guanine (G), and cytosine ©—which constitute a type of code. Information can be stored in DNA by converting the data from binary code to a base-4 code and assigning it one of the four letters. A single gram of DNA can represent nearly 1 billion terabytes (1 zettabyte) of data. And the stored data can be preserved for long periods—decades, or even centuries.

Continue reading “Scientists hid encryption key for Wizard of Oz text in plastic molecules” »

Aug 9, 2022

This startup wants to copy you into an embryo for organ harvesting

Posted by in categories: biotech/medical, ethics

With plans to create realistic synthetic embryos, grown in jars, Renewal Bio is on a journey to the horizon of science and ethics.

Aug 9, 2022

The new device could be an artificial pancreas for diabetics

Posted by in category: biotech/medical

Aug 9, 2022

How image features influence reaction times

Posted by in categories: augmented reality, biotech/medical, neuroscience, virtual reality

It’s an everyday scenario: you’re driving down the highway when out of the corner of your eye you spot a car merging into your lane without signaling. How fast can your eyes react to that visual stimulus? Would it make a difference if the offending car were blue instead of green? And if the color green shortened that split-second period between the initial appearance of the stimulus and when the eye began moving towards it (known to scientists as the saccade), could drivers benefit from an augmented reality overlay that made every merging vehicle green?

Qi Sun, a joint professor in Tandon’s Department of Computer Science and Engineering and the Center for Urban Science and Progress (CUSP), is collaborating with neuroscientists to find out.

He and his Ph.D. student Budmonde Duinkharjav—along with colleagues from Princeton, the University of North Carolina, and NVIDIA Research—recently authored the paper “Image Features Influence Reaction Time: A Learned Probabilistic Perceptual Model for Saccade Latency,” presenting a model that can be used to predict temporal gaze behavior, particularly saccadic latency, as a function of the statistics of a displayed image. Inspired by neuroscience, the model could ultimately have great implications for , telemedicine, e-sports, and in any other arena in which AR and VR are leveraged.

Aug 8, 2022

Progress towards a pan-coronavirus vaccine

Posted by in categories: biotech/medical, futurism

A universal coronavirus vaccine “could solve the problem of endless new waves of disease caused by variants with reduced vaccine sensitivity”.


Researchers at the Francis Crick Institute in London have shown that a specific area of the SARS-CoV-2 spike protein is a promising target for a pan-coronavirus vaccine that could offer protection against new variants, as well as common colds, and help prepare for future pandemics.

Developing a vaccine against multiple coronaviruses is a challenge because this family of viruses have many key differences, frequently mutate, and generally induce incomplete protection against reinfection. This is why people can suffer repeatedly from common colds, and why it is possible to be infected multiple times with different variants of SARS-CoV-2.

Continue reading “Progress towards a pan-coronavirus vaccine” »

Aug 8, 2022

Researchers develop a small molecule that could make immunotherapy available to all cancer patients

Posted by in category: biotech/medical

Researchers at Tel Aviv University and the University of Lisbon have jointly identified and synthesized a small molecule that could be a more accessible and effective alternative to an antibody that is successfully used to treat a range of cancers. Behind the groundbreaking development is an international team of researchers led by Prof. Ronit Sachi-Fainaro, Head of the Center for Cancer Biology Research and Head of the Laboratory for Cancer Research and Nanomedicine at the Sackler Faculty of Medicine, Tel Aviv University, and Prof. Helena Florindo and Prof. Rita Guedes from the Research Institute for Medicines at the Faculty of Pharmacy, University of Lisbon. The results of the study were published in the Journal for ImmunoTherapy of Cancer.

“In 2018, the Nobel Prize in Medicine was awarded to James Allison and Tasuku Honjo for their contribution to the study of immunotherapy, the treatment of cancer through activation of the immune system,” says Prof. Satchi-Fainaro, a 2020 Kadar Family Award recipient. “Honjo discovered that called T cells express the protein PD-1 that disables the T-cells’ own activity when it binds to the protein PD-L1 expressed in cancer cells. In fact, the interaction between PD-1 and PD-L1 allows cancer cells to paralyze the T cells, preventing them from attacking the cancer cells. Honjo developed antibodies that neutralize either PD-1 or PD-L1, thereby releasing the T cells to fight cancer effectively.”

Continue reading “Researchers develop a small molecule that could make immunotherapy available to all cancer patients” »

Aug 8, 2022

Researchers discover one of the largest known bacteria-to-animal gene transfers inside a fruit fly

Posted by in categories: biotech/medical, genetics

A fruit fly genome is not a just made up of fruit fly DNA—at least for one fruit fly species. New research from the University of Maryland School of Medicine’s (UMSOM) Institute for Genome Sciences (IGS) shows that one fruit fly species contains whole genomes of a kind of bacteria, making this finding the largest bacteria-to-animal transfer of genetic material ever discovered. The new research also sheds light on how this happens.

The IGS researchers, led by Julie Dunning Hotopp, Ph.D., Professor of Microbiology and Immunology at UMSOM and IGS, used new genetic long-read sequencing technology to show how genes from the bacteria Wolbachia incorporated themselves into the fly genome up to 8,000 years ago.

The researchers say their findings show that unlike Darwin’s finches or Mendel’s peas, isn’t always small, incremental, and predictable.

Aug 8, 2022

Nanoscale Rotors Constructed From DNA — Smallest Flow-Driven Motors in the World

Posted by in categories: biotech/medical, nanotechnology

Scientists have constructed the smallest flow-driven motors in the world. Inspired by iconic Dutch windmills and biological motor proteins, they created a self-configuring flow-driven rotor from DNA that converts energy from an electrical or salt gradient into useful mechanical work. The results ope.

Aug 8, 2022

Transfusing blood from an old mouse to a younger mouse causes ageing

Posted by in categories: biotech/medical, life extension

View insights.


Transfusing young mice with blood from older rodents quickly triggers ageing, suggesting that cellular ageing isn’t just a case of wear and tear.

There is a longstanding hypothesis that surgically connecting an old mouse with a young rodent causes a transfer of blood that de-ages the older animal. While this benefits the older mouse, the effects on the young donor rodent were less clear.

Continue reading “Transfusing blood from an old mouse to a younger mouse causes ageing” »

Page 835 of 2,621First832833834835836837838839Last