Toggle light / dark theme

NSF awards team $2M to develop faster and more efficient semiconductors

The COVID-19 pandemic supply shortfalls and geopolitical issues cast a bright light on the decline of semiconductor manufacturing in the United States, down from 37 percent of the global total in 1993 to about 12 percent now. The Creating Helpful Incentives to Produce Semiconductors and Science Act of 2022 (CHIPS Act) directed $280 billion in spending, with the bulk on scientific research and development.

America needs better computer chips.

Mobile devices are ubiquitous; we carry them around in a pocket or purse and use them for everyday tasks. However, they are connected to centralized servers and thus cannot learn much about or adjust to their complicated and changing environments independently.

Drones with defibrillators are saving people from cardiac arrest

They are faster than ambulances in situations where timing is key.


Karolinska Institutet researchers have been investigating the idea of sending drones equipped with automated external defibrillators (AEDs) to patients in cardiac arrest instead of ambulances and have now found that, in more than half of the cases, the drones were three minutes ahead of the vehicles. In addition, in the majority of cases where the patient was in cardiac arrest, the drone-delivered defibrillator was employed to stop the condition from getting worse or leading to death.

The most simple factor

“The use of an AED is the single most important factor in saving lives. We have been deploying drones equipped with AED since the summer of 2020 and show in this follow-up study that drones can arrive at the scene before an ambulance by several minutes. This lead time has meant that the AED could be used by people at the scene in several cases,” said Andreas Claesson, Associate Professor at the Center for Cardiac Arrest Research at the Department of Clinical Research and Education, Södersjukhuset, Karolinska Institutet, and principal investigator of the study.

Video: GR-1 humanoids unleash impressive dance moves, redefines robotics

The engineers at Fourier Intelligence have successfully combined functionality with a touch of creativity, making the GR-1 more than just a caregiver. The 300-Nm hip actuators, equivalent to 221 pound-feet (lb-ft), empower the GR-1 to lift a remarkable 110 lb (50 kilograms, kg) – an impressive feat for a robot of its stature. This capability positions the GR-1 as valuable in assisting patients with various activities, from getting up from a bed or toilet to navigating a wheelchair.

Nobel Prize in Phyiscs 2023

Pierre Agostini, Ferenc Krausz and Anne L’Huillier share the 2023 Nobel Prize in Physics for experiments that “have given humanity new tools for exploring the world of electrons inside atoms and molecules.” A more succinct description is that they have given us attosecond physics.

Attosecond physics is the science of the exceedingly, extremely, exceptionally [insert your own hyperbolic adverb here] fast. To put it into context, L’Huillier’s first call from the Nobel Prize’s Adam Smith after she received the news took 3 minutes 48 seconds, or-1 attoseconds. Her first heartbeat during that call lasted a second, or a billion billion attoseconds. Almost defying a description, an attosecond is an unfathomably tiny amount of time. But it happens to be the natural timescale of the near-instantaneous dance of electrons.

Being able to gain a glimpse into the incredibly tiny scale of electrons in the incredibly fast attosecond regime opens the door to directly measuring, and perhaps even controlling, quantum processes. And this, in turn, offers huge potential to advance research, not only in quantum physics but also in biology, chemistry, medicine, electronics and many more areas important to science and society.

The Promise Of Stem Cells In Aging Research | Dr Elena Seranova Interview Series Ep3

In particular I like the 3D modeling segment.


Here Dr Seranova talks about stem cell use in helping with research into diseases of aging, particularly generating organiods of the brain by growing them from stem cells.
Some links are affiliate links so we will earn a commission when they are used to purchase products.

NMN Bio 10% off all products https://tinyurl.com/2af2v2fw Code ModernHealthSpan10 in link.
Renue By Science 10% : Code MHS NMN https://tinyurl.com/3wr8pr3t.
ProHealth 15% discount Code MODERN : https://prohealth.pxf.io/zNOPoW
NMN http://prohealth.pxf.io/JzQaER
NOVOS Core & Boost https://novos.sjv.io/QyWP7o code 5OFFMHS
DoNotAge 10% discount code MHS https://tinyurl.com/6dbvhv87
☕If you would like to support our channel, we’d love a coffee…thank you! _https://www.buymeacoffee.com/mhealthspan_

Nuchido Time+ 20% discount of first purchase with code MODERN20 https://nuchido.com/MODERN
*Insidetracker* 20% discount Code MODERN20 _https://insidetracker.sjv.io/NkbP7V_
*Bulletproof* 15% off with coupon code: HEALTHSPAN15: _https://tinyurl.com/4npjk5vp_
*SiPhox Health* 20% Code MODERN blood test (only in US & Canada) _https://siphoxhealth.com/discount/modern_
*Delavie Sciences* 10% Code Modern Age Defying Serum https://tinyurl.com/yp2jmhy8 Eye Refresh https://tinyurl.com/mt8knv3s.
*OmegaQuant* 5% discount Code MODERN _https://omegaquant.com/shop/_

Dr. Seranova is a serial entrepreneur, holds an MSc in Translational Neuroscience from the University of Sheffield and a PhD in Stem Cell Biology and Autophagy from the University of Birmingham, UK.

Progress in wastewater treatment via organic supramolecular photocatalysts under sunlight

Refractory organic pollutants, including phenols, perfluorinated compounds, and antibiotics, are abundant in various industrial wastewater streams such as chemical, pharmaceutical, coking, and dyeing sectors, as well as municipal and domestic sources. These pollutants pose significant threats to ecological well-being and human health.

The imperative to achieve complete removal of organic contaminants from water and facilitate water recycling is paramount for enhancing and ensuring sustainable economic and social progress. Addressing the efficient removal of recalcitrant organic pollutants in water is not only a focal point in environmental chemical pollution control research but also a pivotal technical challenge constraining industrial wastewater reuse.

Advanced oxidation processes (AOPs), especially heterogeneous AOPs, yield strongly including ·OH, ·O2-, and ·SO4- to oxidize organic pollutants under ambient conditions, are appealing wastewater treatment technologies for decentralized systems. AOPs often need excessive energy input (UV light or electricity) to activate soluble oxidants (H2O2, O3, persulfates), thus more cost-effective AOPs are urgently required.

Invisible No More: Tiny Bubbles Could Reveal Immune Cell Secrets and Improve Treatments

Macrophages, small but essential cells in the immune system, hold promise for cell-based therapies in numerous health conditions. Unlocking the full potential of macrophage therapies depends on our ability to observe their activities within the body. Now, researchers from Penn State have potentially developed a method to monitor these cells in action.

In a study published in the journal Small, the Penn State researchers report a novel ultrasound imaging technique to view macrophages continuously in mammal tissue, with potential for human application in the future.

“A macrophage is a type of immune cell that is important in nearly every function of the immune system, from detecting and clearing pathogens to wound healing,” said corresponding author Scott Medina, the William and Wendy Korb Early Career Associate Professor of Biomedical Engineering. “It is a component of the immune system that really bridges the two types of immunity: innate immunity, which responds to things very quickly but in a not very precise way, and adaptive immunity, which is much slower to come online but responds in a much more precise way.”

CRISPR-powered optothermal nanotweezers allow targeted manipulation of single DNA molecules

For decades, researchers have sought ways to precisely manipulate and identify individual molecules like DNA in liquid environments. Such capabilities could revolutionize areas ranging from disease diagnosis to drug development. However, the randomness of molecular movements in fluids has hindered progress.

Now, scientists from Shenzhen University and the Chinese University of Hong Kong report promising advances in optical tweezing techniques that allow exquisite control over nanoscale biological particles (Light: Science & Applications, “CRISPR-powered optothermal nanotweezers: Diverse bio-nanoparticle manipulation and single nucleotide identification”).

A The diagrammatic sketch of the three components in the solution: DNA@AuNS conjugate, CRISPR/Cas12a complex, and target ssDNA. b Optical setup, the BS, SPF, and TL are beam splitter, short pass filter, and tube lens (f = 200 mm), respectively. Additional details of the setup are provided in the Materials and Methods section. c Dispersion of the three components in the solution without optical heating. d Optothermal net force induced migration and DNA@AuNS conjugate cleavage upon optical heating, the heating laser power is 0.5 mW. e Observation of the cleavage after the optical heating is switched off. (© Light: Science & Applications) (click on image to enlarge)

What the data says about Americans’ views of artificial intelligence

Pew Research Center surveys show that Americans are increasingly cautious about the growing role of AI in their lives generally. Today, 52% of Americans are more concerned than excited about AI in daily life, compared with just 10% who say they are more excited than concerned; 36% feel a mix of excitement and concern.

Despite these cautious overall views, Americans see some specific uses of AI positively, and attitudes depend a great deal on the context of how and why AI is being used.

This post summarizes what we know so far about how Americans view AI in everyday life, the workplace, and health and medicine.

New Medication given every 1–3 months may Slash Stubborn High Cholesterol

While currently available PCSK9 inhibitor medications to lower cholesterol must be administered every few weeks by injection, a new, investigational PCSK9 inhibitor called recaticimab safely lowered bad cholesterol more than 50% when injected every 1–3 months, depending on dose.

A new PCSK9 inhibitor (recaticimab) injected every one to three months may work safely and provide more flexible dosing to lower cholesterol, according to late-breaking science presented today at the American Heart Association’s Scientific Sessions 2023. The meeting, Nov. 11–13, in Philadelphia, is a premier global exchange of the latest scientific advancements, research and evidence-based clinical practice updates in cardiovascular science.

“Previous studies found that 30% to 40% of people discontinued their current PCSK9 therapies, given every two to four weeks, during or after six months of beginning treatment. More flexible dosing with recaticimab, given up to every 12 weeks, might increase the proportion of people with high levels of bad cholesterol to stick with their recommended treatment to lower bad cholesterol levels and reduce risk of heart disease,” said lead study author Xin Du, Ph.D., a professor of cardiology at Beijing Anzhen Hospital and the Capital Medical University in Beijing, China.