Toggle light / dark theme

Study unveils protein signatures for early detection of endometrial cancer in cervico-vaginal fluid

In a recent study published in eBioMedicine, researchers evaluated proteomic signatures in blood plasma and cervicovaginal fluid for endometrial cancer detection.

Study: Detection of endometrial cancer in cervico-vaginal fluid and blood plasma: leveraging proteomics and machine learning for biomarker discovery. Image Credit: mi_viri/Shutterstock.com.

Understanding the link between brain tumour and movement disorder

A brain tumor is the growth of abnormal cells in the brain or the area near it including nerves, pituitary gland, pineal gland, and membranes that cover the surface of the brain. Sometimes it can happen in the brain tissue as well. Brain tumours can be cancerous (malignant) or it can be non-cancerous (benign). However, both of them can be potentially life-threatening.

On the other hand, movement disorders refer to a cluster of neurological conditions that can either cause increased movements or decreased movements. For the unversed, brain tumours that are specifically affecting the brainstem, can sometimes cause various movement disorders.

Epigenetic Editing Explodes on the Heels of Gene Editing Success

Ubiquitous Potential

While many gene-editing therapies are focused on fatal genetic diseases, epigenetic editing’s safety profile may enable the treatment of more common diseases. The fact that no underlying changes are made to the DNA sequence “offers some additional safety assurances for this approach compared to some others where the risk/benefit [ratio] needs to be maybe a little different before you would employ those technologies,” Kane told BioSpace.

Additionally, because most common diseases are not driven by genetic mutations, epigenetic editing may be a better fit. “Most of those diseases are driven from expression levels being at an unhealthy level,” Kane said. “That is something that a tool like epi[genetic] editing is uniquely well-suited to address.”

Research team develops important building block for artificial cells

During cell division, a ring forms around the cell equator, which contracts to divide the cell into two daughter cells. Together with researchers from Heidelberg, Dresden, Tübingen and Harvard, Professor Jan Kierfeld and Lukas Weise from the Department of Physics at TU Dortmund University have succeeded for the first time in synthesizing such a contractile ring with the help of DNA nanotechnology and to uncover its contraction mechanism.

The results have been published in the journal Nature Communications (“Triggered contraction of self-assembled micron-scale DNA nanotube rings”).

In synthetic biology, researchers try to recreate crucial mechanisms of life in vitro, such as cell division. The aim is to be able to synthesize minimal cells. The research team led by Professor Kerstin Göpfrich from Heidelberg University has now synthetically reproduced contractile rings for cell division using polymer rings composed of DNA nanotubes.

Translation software enables efficient DNA data storage

In support of a major collaborative project to store massive amounts of data in DNA molecules, a Los Alamos National Laboratory–led team has developed a key enabling technology that translates digital binary files into the four-letter genetic alphabet needed for molecular storage.

“Our software, the Adaptive DNA Storage Codec (ADS Codex), translates data files from what a computer understands into what biology understands,” said Latchesar Ionkov, a computer scientist at Los Alamos and principal investigator on the project. “It’s like translating from English to Chinese, only harder.”

DNA offers a compact way to store huge amounts of data cost-effectively. Los Alamos National Laboratory has developed ADS Codex to translate the 0s and 1s of digital computer files into the four-letter code of DNA.

MEMS Explained – A Comprehensive Guide to Microelectromechanical Systems

In the mid-1990’s, MEMS emerged in industrial manufacturing in a major way and MEMS components began appearing in numerous commercial products and applications including force sensors used to control brake deployment in vehicles, blood pressure sensors, inkjet printer heads, miniature analytical instruments, fiber-optic network components, air-and spacecraft control and of course military applications like surveillance and munitions guidance.