Eating junk food, stress, unhealthy lifestyle and genes explain the major reason behind increase in stomach cancer cases in India, said experts here on Wednesday.
Category: biotech/medical – Page 571
Combining AI with traditional wet lab work creates a virtuous circle from lab to data and back to the lab.
AI, with the right data, can span all of these scales and make sense of the data we collect on all of them. It’s poised to accelerate basic science, the business of biotechs, the behemoth pharmaceutical companies, and the broader bioeconomy.
Obesity and Cancer Risk
Posted in biotech/medical
Watch as an expert discusses the link between obesity and cancer, and.
CHAPTERS
00:00 — Does Obesity Cause Cancer?
0:31 — Is Obesity the New Smoking?
1:30 — BMI and Cancer Risk.
1:58 — Obesity and Cancer Risk.
Computers, cars, mobile phones, toasters: countless everyday objects contain microchips. They’re tiny, unremarkable and cheap, but since the outbreak of the coronavirus pandemic, they’ve been at the center of a political and industrial tug of war.
Against the backdrop of the trade war between China and the US, “The Microchip War” spotlights all the aspects of this conflict. In the film, the world’s most influential actors in this industrial sector weigh in.
No one is in any doubt that microprocessors are as strategically important as oil. The battle over microchips could potentially redefine the geopolitical world order. In the United States and Europe, fears over a microprocessor shortage have led to a flood of investment pledges. After ceding microchip production to Asia in the 1990s, market leaders in the West are now trying to bring production back home and thereby regain control of the production chain.
This resulted in the adoption of new legislation in 2022: the European Chips Act initiated by the EU Commission under Ursula von der Leyen and — in response to this — the American “Chip and Science Act” initiated by Joe Biden. China, the US, Europe: major global powers fighting over tiny microchips. Pandemic and resource scarcity have fueled the desire for industrial reconquest and economic superiority.
But is this reindustrialization actually possible? Can the West challenge the foundations of globalization in this way?
#documentary #dwdocumentary #usa #europe #asia.
Good telescope that I’ve used to learn the basics: https://amzn.to/35r1jAk.
Get a Wonderful Person shirt: https://teespring.com/stores/whatdamath.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.
Hello and welcome! My name is Anton and in this video, we will talk about the incredible effects gut microbiome has on our body.
Links:
https://www.clarkson.edu/news/microbes-gut-might-affect-pers…s-research.
https://www.smithsonianmag.com/smart-news/fecal-transplants-…180978416/
https://www.nature.com/articles/s41586-021-03532-0
https://www.nature.com/articles/s43587-021-00093-9
https://en.wikipedia.org/wiki/Gut%E2%80%93brain_axis.
https://en.wikipedia.org/wiki/Gut_microbiota.
https://www.mdpi.com/2072-6643/14/3/466
#microbiome #gut #bacteria.
0:00 Gut Microbes Intro.
0:55 You are what you eat…on an entirely different level.
1:55 Gut Brain communication.
2:50 Important functions.
3:35 Additional function we never knew about.
4:10 Surprising diversity of genes.
5:10 Modern evolution and how it affected bacteria.
6:10 It was different in ancient humans.
8:10 Even more surprising discoveries from mice — poop transplants.
10:25 Affects our brains and our mood.
11:50 Even changes our personalities?!
Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.
Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF
Space Engine is available for free here: http://spaceengine.org.
Particles dispersed in a liquid typically jitter aimlessly in response to the random buffeting they receive from the molecules that surround them. But if the liquid is subjected to a steep temperature gradient, this random motion can become directional as the temperature gradient sets up flows that move the particles from hot regions of the liquid to colder ones. The theory of this so-called thermophoresis is actively developing, but direct observations of both the suspended particles and the liquid molecules are scant. Now Tetsuro Tsuji of Kyoto University in Japan and his colleagues have experimentally characterized the tiny surface flows that drive thermophoresis [1]. Those flows could be harnessed to move and concentrate DNA and other large biomolecules that are suspended in liquids.
For their experiments, the team glued a single polystyrene sphere, 7 µm in diameter, to the lid of a tiny transparent box. They filled the box with water laced with 500-nm-diameter fluorescent tracers. Shining a laser up through the bottom of the box, the team repeatedly drew a circle around the sphere, a process that trapped tracers located within the circle of light. The team focused a second laser, tuned to one of water’s absorption bands, at a spot 18 µm from the polystyrene sphere, locally heating the water to create a temperature gradient in the liquid and across the sphere.
Using a microscope the team observed that, after a few seconds, the tracers started flowing over the sphere’s surface, moving from the sphere’s cold end to its warmer one. From the observations, the researchers showed that this flow imparted momentum to the sphere. They also inferred the force that would have propelled the sphere away had it not been immobilized. Modeling the system under different conditions confirmed the inferences.
A dynamical tension model captures how cells swap places with their neighbors in epithelial tissues, explaining observed phase transitions and cellular architectures.
Epithelial tissues line the surfaces of every organ in our bodies. In the earliest stages of organ development and in wound healing, the cells that make up these simple sheets constantly rearrange themselves, exchanging positions like molecules in a liquid. But this fluidization is often hindered by the formation of multicell clusters, whose origins remain unclear. Using a dynamical structural model, Fernanda Pérez-Verdugo and Shiladitya Banerjee of Carnegie Mellon University in Pennsylvania now identify the mechanical prerequisites that lead to the formation and dissolution of these stabilized clusters [1]. They show how dynamic feedback between tension and strain controls the tissue’s material properties.
Existing models of tissue fluidity treat epithelial tissues as foam-like, polygonal networks of cells whose edges join at triple points. However, these models fail to explain the mechanisms underpinning cell neighbor exchanges. In particular, they oversimplify such exchanges by treating them as an instantaneous process, thereby avoiding the impact of exchanges that stall midprocess. One resulting discrepancy with experimental results is the absence of stable “rosette” structures that are observed in developing tissues where four or more cells meet.
Sumit Rana, head of research and development, discusses how the EHR giant’s system uses AI to generate progress notes, create draft responses to patient questions and assist with medical coding. And how AI sometimes can be more empathetic than a person.
This protocol for the spatiotemporal control of RNA activity uses LicV, a synthetic, photoswitchable RNA-binding protein (RBP) that can bind to a specific RNA sequence in response to blue light irradiation, and provides an efficient and generalizable strategy for engineering photoswitchable RBPs.