Toggle light / dark theme

Insights into healing and aging were discovered by National Institutes of Health researchers and their collaborators, who studied how a tiny sea creature regenerates an entire new body from only its mouth. The researchers sequenced RNA from Hydractinia symbiolongicarpus, a small, tube-shaped animal that lives on the shells of hermit crabs. Just as the Hydractinia were beginning to regenerate new bodies, the researchers detected a molecular signature associated with the biological process of aging, also known as senescence. According to the study published in Cell Reports, Hydractinia demonstrates that the fundamental biological processes of healing and aging are intertwined, providing new perspective on how aging evolved.

https://www.nih.gov/news-events/news-releases/scientists-dis…a-creature


NIH researchers researchers and collaborators have gained some key insights into the biological inner-workings of regrowing a body, the evolution of aging and a unique method to dispose of aging cells, by studying the genomes of a hermit crab (Hydractinia symbiolongicarpus).

Still seems unsafe to me until its 100% error free, but step in correct direction at least.


Researchers have found that splitting the gene editor used in traditional CRISPR technology creates a more precise tool that can be switched on and off, with significantly less chance of causing unintended genome mutations. They say their novel tool can potentially correct around half of the mutations that cause disease.

CRISPR is one of those scientific terms that has made it into the everyday lexicon. Arguably one of the biggest discoveries of the 21st century, the gene-editing tool has revolutionized research and the treatment of genetic and non-genetic diseases. But the primary risk associated with CRISPR technology is ‘off-target edits,’ namely unexpected, unwanted, or even adverse alterations at locations in the genome other than the targeted site.

Now, researchers at Rice University have developed a new CRISPR-based gene-editing tool that’s more precise and significantly reduces the likelihood of off-target edits occurring.

Lung cancer is the leading cause of cancer-related deaths in the United States. Some tumors are extremely small and hide deep within lung tissue, making it difficult for surgeons to reach them. To address this challenge, UNC–Chapel Hill and Vanderbilt University researchers have been working on an extremely bendy but sturdy robot capable of traversing lung tissue.

Their research has reached a new milestone. In a new paper, published in Science Robotics, Ron Alterovitz, Ph.D., in the UNC Department of Computer Science, and Jason Akulian, MD MPH, in the UNC Department of Medicine, have proven that their robot can autonomously go from “Point A” to “Point B” while avoiding important structures, such as tiny airways and blood vessels, in a living laboratory model.

“This technology allows us to reach targets we can’t otherwise reach with a standard or even robotic bronchoscope,” said Dr. Akulian, co-author on the paper and Section Chief of Interventional Pulmonology and Pulmonary Oncology in the UNC Division of Pulmonary Disease and Critical Care Medicine. “It gives you that extra few centimeters or few millimeters even, which would help immensely with pursuing small targets in the lungs.”

Many of the genetic mutations that directly cause a condition, such as those responsible for cystic fibrosis and sickle-cell disease, tend to change the amino acid sequence of the protein that they encode. But researchers have observed only a few million of these single-letter ‘missense mutations’. Of the more than 70 million such mutations that can occur in the human genome, only a sliver have been linked conclusively to disease, and most seem to have no ill effect on health.

So when researchers and doctors find a missense mutation that they’ve never seen before, it can be difficult to know what to make of it. To help interpret such ‘variants of unknown significance’, researchers have developed dozens of computational tools that can predict whether a variant is likely to cause disease. AlphaMissense incorporates existing approaches to the problem, which are increasingly being addressed with machine learning.

An international research team led by scientists in the Center for Genetic Epidemiology at the Keck School of Medicine of USC and USC Norris Comprehensive Cancer Center has singled out mutations in 11 genes that are associated with aggressive forms of prostate cancer.

These findings come from the largest-scale prostate cancer study ever exploring the exome—that is, the key sections of the genetic code that contain the instructions to make proteins. The scientists analyzed samples from about 17,500 .

Today, oncologists customize care for certain individuals with with help from genetic tests. The results can inform treatment, as one class of targeted therapies has proved effective against some inherited prostate cancers. Test findings also can lead to genetic screening among patients’ family members, so they have the chance to take measures that reduce risk and to work with their doctors to be more vigilant in early detection.

The types of cancer that occur in children often are different from those in adults. Childhood cancers usually are not linked to lifestyle or environmental risk factors, as is often the case in adults. Nonetheless, cancer is the second-leading cause of death in children 1 to 14 years old, according to the American Cancer Society. Nearly 10,000 children in the U.S. under the age of 15 will be diagnosed with cancer in 2023, and about 1,000 children are expected to die of the disease.

September is Childhood Cancer Awareness Month, which makes this a good time to learn about three of the most common types of cancer in children: acute lymphocytic leukemia, neuroblastoma and pediatric brain tumors.

Acute lymphocytic leukemia is a cancer of the blood and bone marrow. It’s the most common type of cancer in children, and treatments result in a good chance for a cure. Acute lymphocytic leukemia also can occur in adults, though the chance of a cure is greatly reduced.

‘They’re not announcing like, ‘We have created a model that does a particular thing.’ Instead, they’re saying ‘We are planning to create a resource that is going to be available for biologists to create new models,’ Carpenter said.

The Chan Zuckerberg Initiative, the couple’s LLC, told The Register that they plan to have their product running by 2024. The company also declined to tell the Register how much it’ll have to spend to make its product.

It could be a hefty bill, considering that the computer parts it wants to use are in high demand and low supply, The Register reported.

Pediatric specialists at Lucile Packard Children’s Hospital Stanford are implementing innovative uses for immersive virtual reality (VR) and augmented reality (AR) technologies to advance patient care and improve the patient experience.

Through the hospital’s CHARIOT program, Packard Children’s is one of the only hospitals in the world to have VR available on every unit to help engage and distract patients undergoing a range of hospital procedures. Within the Betty Irene Moore Children’s Heart Center, three unique VR projects are influencing medical education for congenital heart defects, preparing patients for procedures and aiding surgeons in the operating room. And for patients and providers looking to learn more about some of the therapies offered within our Fetal and Pregnancy Health Program, a new VR simulation helps them understand the treatments at a much closer level.

Discovering And Developing Medicines To Keep You Biologically Young — Dr. Marco Quarta, Ph.D. — Co-Founder and CEO, Rubedo Life Sciences; CEO, Phaedon Institute.


Dr. Marco Quarta, Ph.D. is Co-Founder and CEO of Rubedo Life Sciences (https://www.rubedolife.com/), a biopharmaceutical company developing a broad portfolio of innovative therapies engineered to target cells which drive chronic age-related diseases. The company’s proprietary ALEMBIC™ drug discovery platform has engineered novel first-in-class small molecules designed to selectively target senescent cells, which play a key role in the progression of pulmonary, dermatological, oncological, neurodegenerative, fibrotic and other chronic disorders.

Dr. Quarta received his doctorate degree in Biotechnology from the University of Bologna and a Ph.D. in Neuroscience from the University of Padua. He completed a post-doc in Aging and Stem cell Biology in the lab of Prof. Thomas Rando at Stanford University and continued his work at Stanford directing a research team at the Center for Tissue Regeneration, Repair, and Restoration at the VA Hospital in Palo Alto, CA. While there, he established a translational program in regenerative medicine. He has over 35 publications and patents in the field of aging, stem cells, regenerative medicine, and rejuvenation.