Toggle light / dark theme

An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle tactile sensation abilities of robots and human limb prosthetics and could be applied to virtual reality in the future, the authors suggest.

Humans can gently slide a finger on the surface of an object and identify it by capturing both static pressure and high-frequency vibrations. Previous approaches to create artificial tactile for sensing physical stimuli, such as pressure, have been limited in their ability to identify real-world objects upon touch, or they rely on multiple sensors. Creating a artificial sensory system with high spatiotemporal resolution and sensitivity has been challenging.

Chuan Fei Guo and colleagues present a flexible slip sensor that mimics the features of a human fingerprint to enable the system to recognize small features on surface textures when touching or sliding the sensor across the surface. The authors integrated the sensor onto a prosthetic human hand and added machine learning to the system.

Scientists from Centogene, a company focused on rare and neurodegenerative diseases, along with their collaborators at University College London and elsewhere have published a study that links the Acyl-CoA Binding Domain Containing 6 (ACBD6) gene to new forms of early-onset dystonia and parkinsonism. The study is published in Brain in a paper titled, “Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders.”

Using whole exome sequencing data from 45 patients—23 males and 22 females between the ages of 1 and 50 years old—the researchers identified several novel and ultra-rare bi-allelic predicted loss-of-function variants in ACBD6, which are linked to a unique neurodevelopmental syndrome. The condition is accompanied by complex and progressive cognitive and movement disorders such as dystonia in 94% of cases and parkinsonism in older patients or about 32% of cases.

To test the association between ACBD6 and the syndrome, the researchers used zebrafish and frog knockouts. According to tests described in the paper, they observed similar phenotypes to those of affected individuals such as movement disorders, seizures, and facial dysmorphology in the zebrafish models. Their observations of the effects in zebrafish suggest “a combination of muscle and neuronal degeneration leading to movement abnormalities” resulting from the loss of the gene. When they assessed the effects of inactivating the gene in frogs, they observed reported failures in cell movement during gastrulation as a result of the gene’s loss.

Summary: Researchers made a breakthrough in memory research by genetically modifying the LIMK1 protein, crucial for memory, to be controlled by the drug rapamycin.

This study demonstrates the ability to enhance memory functions by manipulating synaptic plasticity in the brain.

The engineered protein showed significant memory improvement in animal models with age-related cognitive decline, offering potential for innovative treatments for neuropsychiatric diseases like dementia. This ‘chemogenetic’ approach, blending genetics and chemistry, opens new avenues in neurological research and therapy.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/product/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.

Researchers at the Mount Sinai Center for Transformative Disease Modeling have released a groundbreaking study identifying 4,749 key gene clusters, termed “prognostic modules,” that significantly influence the progression of 32 different types of cancer. The study, published in Genome Research, serves as a comprehensive resource and lays the foundation for the development of next-generation cancer treatments and diagnostic markers.

Despite significant progress in cancer research, understanding the disease’s genetic intricacies remains challenging. Previous research often focused on isolated gene functions in specific cancer types.

We aimed to fill this knowledge gap by providing a comprehensive analysis of gene-gene interactions across various forms of cancer.

In an exclusive interview, Peter Hegemann said AI is more dangerous than optogenetics.


Contrary to popular belief, there is very little chance that optogenetics will be used in the future to control the human brain, says Peter Hegemann, a biochemist and biophysicist, in a conversation with Interesting Engineering (IE) at the Hong Kong Laureate Forum 2023.

Optogenetics is a scientific technique that uses light to control and manipulate cells within living tissues, particularly in the brain. It allows researchers to control the activity of specific neurons with high precision, both in terms of location and timing.

Currently, scientists are applying optogenetics in pain therapy, behavioral science, and questions around neurological diseases. It has also shown potential for therapeutic applications, such as in the treatment of neurological disorders.

Get a blood test, check blood pressure, and swab for aliments — all without a doctor or nurse.

Adrian Aoun, CEO and co-founder of Forward Health, aims to scale healthcare.


Adrian Aoun, CEO and co-founder of Forward Health, aims to scale healthcare. It started in 2017 with the launch of tech-forward doctor’s offices that eschewed traditional medical staffing for technology solutions like body scanners, smart sensors, and algorithms that can diagnose ailments. Now, in 2023, he’s still on the same mission and rolled up all the learnings and technology found in the doctor’s office into a self-contained, standalone medical station called the CarePod.

The CarePod pitch is easy to understand. Why spend hours in a doctor’s office to get your throat swabbed for strep throat? Walk into the CarePod, soon to be located in malls and office buildings, and answer some questions to determine the appropriate test. CarePod users can get their blood drawn, throat swabbed, and blood pressure read – most of the frontline clinical work performed in primary care offices, all without a doctor or nurse. Custom AI powers the diagnosis, and behind the scenes, doctors write the appropriate prescription, which is available nearly immediately.