Toggle light / dark theme

Scalable aluminum surfaces method enables advancements in cooling, self-cleaning and anti-icing technologies

Many cells in our body have a single primary cilium, a micrometer-long, hair-like organelle protruding from the that transmits cellular signals. Cilia are important for regulating cellular processes, but because of their small size and number, it has been difficult for scientists to explore cilia in brain cells with traditional techniques, leaving their organization and function unclear.

In a series of papers appearing in Current Biology, the Journal of Cell Biology, and the Proceedings of the National Academy of Sciences, researchers at HHMI’s Janelia Research Campus, the Allen Institute, the University of Texas Southwestern Medical Center, and Harvard Medical School used super high-resolution 3D electron microscopy images of mouse brain tissue generated for creating connectomes to get the best look yet at .

Fighting Antibiotic Resistance with Computer-Driven Precision Medicine

How can computer models help medical professionals combat antibiotic resistance? This is what a recent study published in PLOS Biology hopes to address as a team of researchers from the University of Virginia (UVA) developed computer models that can be used to target specific genes in bacteria to combat antimicrobial resistant (AMR) bacteria. This study has the potential to help scientists, medical professionals, and the public better understand innovative methods that can be used to combat AMR with bacterial diseases constantly posing a risk to global human health.

For the study, the researchers used computer models to produce an assemblage of genome-scale metabolic network reconstructions (GENREs) diseases to identify key genes in stomach diseases that can be targeted with antibiotics to circumvent AMR in these bacterial diseases. The researchers validated their findings with laboratory experiments involving microbial samples and found that a specific gene was responsible for producing stomach diseases, thus strengthening the argument for using targeted antibiotics to combat AMR.

“Using our computer models we found that the bacteria living in the stomach had unique properties,” said Emma Glass, who is a PhD Candidate in Biomedical Engineering at UVA and lead author of the study. “These properties can be used to guide design of targeted antibiotics, which could hopefully one day slow the emergence of resistant infections.”

People left horrified after finding out your tonsils can grow back despite being removed

Link :


That was quite the scare for one US woman who was told she needed to have hers removed, despite having had them removed 40 years earlier.

Katy Golden told CNN: “I knew that there was some sort of little flap or something that’s been there for years, but I didn’t realize what it was. I just thought, ‘I’m not a doctor myself. I don’t know much about mouth structure. That’s just how it is’.”

Researchers find new way to ‘Starve’ Prostate Cancer Tumors at the Cellular Level

New research by a team of Indiana University School of Medicine scientists and their collaborators has uncovered a novel vulnerability in prostate cancer animal models that starves prostate tumors of critical nutrients and stunts their growth, which could lead to the development of new treatments for the deadly disease.

Led by IU School of Medicine’s Kirk Staschke, Ph.D., assistant research professor of biochemistry and molecular biology, and Ronald C. Wek, Ph.D., Showalter Professor of Biochemistry, the study was recently published in Science Signaling.

Prostate cancer is a leading cause of cancer deaths in American men. Current treatments target the hormone testosterone, which prostate cancer cells need to grow. Unfortunately, prostate tumors frequently become resistant to these treatments, leaving doctors with few options to stop the disease.

Using AI And ML To Transform Care Delivery Processes

By the end of 2024, artificial intelligence (AI) and machine learning (ML) had established themselves as the main transformative forces behind recent technological advancements in healthcare. A report by Silicon Valley Bank states that in 2024, the amount of VC investment in health AI in the U.S. was expected to reach $11.1 billion, the highest number since 2021.

In my experience, the main driver behind the AI investment and adoption craze is the measurable value technology offers healthcare providers. A 2023 National Bureau of Economic Research study indicates that integrating AI can save the U.S. healthcare system up to $360 billion annually. A 2023 survey by the AMA shows that physicians see AI as a way to reduce the administrative burden of documentation (54%) and improve workflow efficiency (69%).

But do these positive changes reflect on the quality of care, and do patients benefit from AI and ML-powered solutions? In this article, I share my take on the transformative potential of AI and ML in the modern care delivery process.

Inside Your Brain: How Emotional Words Drive Decisions and Behavior

Researchers have discovered that neurotransmitters like dopamine.

Dopamine is a crucial neurotransmitter involved in many important functions in the brain, particularly those related to pleasure, reward, motivation, and motor control. It plays a central role in the brain’s reward system, where it helps reinforce rewarding behaviors by increasing pleasure and satisfaction, making it critical for habit formation and addictive behaviors. Dopamine is also vital for regulating movement, and deficiencies in dopamine production are linked to neurological disorders such as Parkinson’s disease. Additionally, dopamine influences various other functions, including mood regulation, learning, and attention, making it a key focus in studies of both mental health and neurodegenerative diseases.

/* */