Menu

Blog

Archive for the ‘biotech/medical’ category: Page 458

Nov 20, 2023

GLS1 inhibitor that selectively removes senescent cells ameliorated age-associated tissue dysfunction and diseases such as arteriosclerosis

Posted by in categories: biotech/medical, life extension

face_with_colon_three year 2021.


UTokyo People NAKANISH Makoto

UTokyo People JOHMURA Yoshikazu

Continue reading “GLS1 inhibitor that selectively removes senescent cells ameliorated age-associated tissue dysfunction and diseases such as arteriosclerosis” »

Nov 20, 2023

AI system self-organizes to develop features of brains of complex organisms

Posted by in categories: biotech/medical, robotics/AI

Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features of the brains of complex organisms in order to solve tasks.

As such as the organize themselves and make connections, they have to balance competing demands. For example, energy and resources are needed to grow and sustain the network in , while at the same time optimizing the network for . This trade-off shapes all brains within and across species, which may help explain why many brains converge on similar organizational solutions.

Jascha Achterberg, a Gates Scholar from the Medical Research Council Cognition and Brain Sciences Unit (MRC CBSU) at the University of Cambridge said, “Not only is the brain great at solving , it does so while using very little energy. In our new work we show that considering the brain’s problem-solving abilities alongside its goal of spending as few resources as possible can help us understand why brains look like they do.”

Nov 20, 2023

This 3D printer can watch itself fabricate objects

Posted by in categories: 3D printing, biotech/medical, robotics/AI

With 3D inkjet printing systems, engineers can fabricate hybrid structures that have soft and rigid components, like robotic grippers that are strong enough to grasp heavy objects but soft enough to interact safely with humans.

These multimaterial 3D printing systems utilize thousands of nozzles to deposit tiny droplets of resin, which are smoothed with a scraper or roller and cured with UV light. But the smoothing process could squish or smear resins that cure slowly, limiting the types of materials that can be used.

Researchers from MIT, the MIT spinout Inkbit, and ETH Zurich have developed a new 3D inkjet printing system that works with a much wider range of materials. Their printer utilizes computer vision to automatically scan the 3D printing surface and adjust the amount of resin each nozzle deposits in real time to ensure no areas have too much or too little material.

Nov 20, 2023

Team Creates Synthetic Enzymes to Unravel Molecular Mysteries

Posted by in categories: bioengineering, biotech/medical

A University of Texas at Dallas bioengineer has developed synthetic enzymes that can control the behavior of the signaling protein Vg1, which plays a key role in the development of muscle, bone and blood in vertebrate embryos.

The team of researchers is using a new approach, called the Synthetic Processing (SynPro) system, in zebrafish to study how Vg1 is formed. By learning the molecular rules of signal formation in a developing animal, researchers aim to engineer mechanisms – such as giving cells new instructions – that could play a role in treating or preventing disease.

Dr. P.C. Dave P. Dingal, assistant professor of bioengineering in the Erik Jonsson School of Engineering and Computer Science, and his colleagues published their research online Oct. 16 in Proceedings of the National Academy of Sciences.

Nov 20, 2023

Lipid nanoparticles that deliver mRNA to T cells hold promise against autoimmune diseases

Posted by in categories: biotech/medical, engineering, nanotechnology

Autoimmune disorders are among the most prevalent chronic diseases across the globe. Emerging treatments for autoimmune disorders focus on “adoptive cell therapies,” or those using cells from a patient’s own body to achieve immunosuppression. These therapeutic cells are recognized by the patient’s body as “self,” therefore limiting side effects, and are specifically engineered to localize the intended therapeutic effect.

In treating , current adoptive cell therapies have largely centered around the regulatory T cell (Treg), which is defined by the expression of the Forkhead box protein 3, orFoxp3. Although Tregs offer great potential, using them for therapeutic purposes remains a major challenge. In particular, current delivery methods result in inefficient engineering of T cells.

Tregs only compose approximately 5%–10% of circulating peripheral blood . Furthermore, Tregs lack more specific surface markers that differentiate them from other T cell populations. These hurdles make it difficult to harvest, purify and grow Tregs to therapeutically relevant numbers. Although there are additional tissue-resident Tregs in non-lymphoid organs such as in and visceral adipose tissue, these Tregs are severely inaccessible and low in number.

Nov 20, 2023

3D folding of the genome: Theoretical model helps explain how cell identity is preserved when cells divide

Posted by in categories: biotech/medical, chemistry, genetics

Every cell in the human body contains the same genetic instructions, encoded in its DNA. However, out of about 30,000 genes, each cell expresses only those genes that it needs to become a nerve cell, immune cell, or any of the other hundreds of cell types in the body.

Each cell’s fate is largely determined by chemical modifications to the proteins that decorate its DNA; these modification in turn control which genes get turned on or off. When copy their DNA to divide, however, they lose half of these modifications, leaving the question: How do cells maintain the of what kind of cell they are supposed to be?

A new MIT study proposes a theoretical that helps explain how these memories are passed from generation to generation when cells divide. The research team suggests that within each cell’s nucleus, the 3D folding pattern of its genome determines which parts of the genome will be marked by these chemical modifications.

Nov 20, 2023

New study reveals the genetics of human head shape

Posted by in categories: biotech/medical, genetics, neuroscience

Researchers at the University of Pittsburgh and KU Leuven have discovered a suite of genes that influence head shape in humans. These findings, published this week in Nature Communications, help explain the diversity of human head shapes and may also offer important clues about the genetic basis of conditions that affect the skull, such as craniosynostosis.

By analyzing measurements of the cranial —the part of the skull that forms the rounded top of the head and protects the brain—the team identified 30 regions of the genome associated with different aspects of head , 29 of which have not been reported previously.

“Anthropologists have speculated and debated the genetics of cranial vault shape since the early 20th century,” said co-senior author Seth Weinberg, Ph.D., professor of oral and craniofacial sciences in the Pitt School of Dental Medicine and co-director of the Center for Craniofacial and Dental Genetics.

Nov 20, 2023

Deep within the Earth, iron oxide withstands extreme temperatures and pressures

Posted by in categories: biotech/medical, chemistry

The core–mantle boundary (CMB) is the interface between the Earth’s iron metal core and the thick rocky layer of mantle just above the core. It is a world of extremes—temperatures thousands of degrees Fahrenheit and pressures over a million times the pressure at the surface of the Earth. While it may seem far away from our environment on Earth’s surface, plumes of material from the CMB can ascend upwards through the planet over tens of millions of years, influencing the chemistry, geologic structure, and plate tectonics of the surface world where we live.

Though scientists cannot travel to the center of the Earth to study the CMB, they can get clues about what lies beneath the planet’s surface by measuring earthquakes. Seismic waves travel at different speeds depending on the material they are traveling through, allowing researchers to infer what lies deep below the surface using seismic signatures. This is analogous to how ultrasound uses waves of sound to image inside of the human body.

Recent research shows that the base of Earth’s mantle is actually complex and heterogeneous—in particular, there are mountain-like regions where seismic waves mysteriously slow down. These blobs, named ultralow velocity zones (ULVZs) and first discovered by Caltech’s Don Helmberger, are dozens of kilometers thick and lie around 3,000 kilometers beneath our feet.

Nov 20, 2023

Scientists set the stage for quantum chemistry in space on NASA’s cold atom lab

Posted by in categories: biotech/medical, chemistry, mobile phones, quantum physics

For the first time in space, scientists have produced a mixture of two quantum gases made of two types of atoms. Accomplished with NASA’s Cold Atom Laboratory aboard the International Space Station, the achievement marks another step toward bringing quantum technologies currently available only on Earth into space.

Physicists at Leibniz University Hannover (LUH), part of a collaboration led by Prof. Nicholas Bigelow, University of Rochester, provided the theoretical calculations necessary for this achievement. While quantum tools are already used in everything from cell phones to GPS to , in the future, quantum tools could be used to enhance the study of planets, including our own, as well as to help solve mysteries of the universe and deepen our understanding of the fundamental laws of nature.

The new work, performed remotely by scientists on Earth, is described in Nature.

Nov 19, 2023

Re-Thinking The ‘When’ And ‘How’ Of Brain Death

Posted by in categories: biotech/medical, law, neuroscience, policy

In an article published yesterday in MIT Technology Review, Rachel Nuwer wrote a thought provoking piece exploring the boundaries between life and death.


Beyond the brain and brain death itself, related efforts are studying and attempting to develop techniques for restoring metabolic function in a number of organs other than the brain after death, including the heart and kidneys, which could greatly enhance organ donation capabilities.

While these developments are promising, researchers caution against overpromising. The path to these medical advancements is paved with years of research and ethical considerations. The exploration into the dying process will surely challenge not only scientific and medical fields but also societal, theological, and legal considerations, as it reshapes our understanding of one of life’s most profound phenomena. At some point, policy and regulations will need to follow—further adding to the complexity of the topic.

Continue reading “Re-Thinking The ‘When’ And ‘How’ Of Brain Death” »

Page 458 of 2,817First455456457458459460461462Last