Toggle light / dark theme

New species discovered in the human gut microbiome could improve nitrogen availability

This new species, Desulfovibrio diazotrophicus, is from a family of bacteria that survive and grow on sulfur-containing compounds. They are known as sulfate-reducing bacteria (SRB) and a biproduct of their activity is the release of the gas hydrogen sulfide, which has a characteristic ‘rotten egg’ smell. Whilst this is unpleasant for those around you, there is also some concern that it is detrimental for gut health; the presence of SRB has been associated with gut inflammation, inflammatory bowel disease (IBD) and colorectal cancer.

Despite this, evidence for a definitive link between SRB and chronic disease has never been established. For a start, they are very widespread; around half the human population have SRB in their gut, so maybe not all of them are bad? They may even have positive effects. They release energy and nutrients from the material that other bacteria produce when they are fermenting the food we eat.

This uncertainty triggered interest from the , including scientists from the Quadram Institute (QI), who want to understand exactly what SRB do in the microbiome and how they interact with food and the gut. Very few species have been characterized, most from Western countries. To broaden the picture, QI researchers have been working with Professor Chen Wei and colleagues from Jiangnan University, China to isolate and characterize SRB from the intestinal tract of healthy Chinese and British people. The research was funded by the Biotechnology and Biological Sciences Research Council, part of UKRI.

Scientists find mechanism that eliminates senescent cells

Scientists at UC San Francisco are learning how immune cells naturally clear the body of defunct—or senescent—cells that contribute to aging and many chronic diseases. Understanding this process may open new ways of treating age-related chronic diseases with immunotherapy.

In a healthy state, these —known as invariant Natural Killer T (iNKT) cells—function as a surveillance system, eliminating cells the body senses as foreign, including , which have irreparable DNA damage. But the iNKT cells become less active with age and other factors like obesity that contribute to chronic disease.

Finding ways to stimulate this natural surveillance system offers an alternative to senolytic therapies, which to date have been the primary approach to removing senescent cells. It could be a boon to a field that has struggled with how to systemically administer these senolytics without .

17 Best Longevity Conferences and Events for 2021

We’ve updated our list of top longevity conferences and events for 2021, adding 4 new ones and removing 3 that are no longer happening:


Update 5/10/2021: This post has been updated since we originally published it in August 2020. Several new longevity conferences have been added and several which are no longer happening have been removed.

Affiliate Disclaimer: Longevity Advice is reader-supported. When you buy something using links on our site, we may earn a few bucks.

Usually, when you approach a random stranger and immediately begin talking about things like DNA methylation rates and NAD+ precursors, you’re lucky if all you get is a weird look.

Reversing a Genetic Cause of Poor Stress Tolerance

Stress management.


Everyone faces stress occasionally, whether in school, at work, or during a global pandemic. However, some cannot cope as well as others. In a few cases, the cause is genetic. In humans, mutations in the OPHN1 gene cause a rare X-linked disease that includes poor stress tolerance. Cold Spring Harbor Laboratory (CSHL) Professor Linda Van Aelst seeks to understand factors that cause specific individuals to respond poorly to stress. She and her lab studied the mouse gene Ophn1, an analog of the human gene, which plays a critical role in developing brain cell connections, memories, and stress tolerance. When Ophn1 was removed in a specific part of the brain, mice expressed depression-like helpless behaviors. The researchers found three ways to reverse this effect.

To test for stress, the researchers put mice into a two-room cage with a door in between. Normal mice escape from the room that gives them a light shock on their feet. But animals lacking Ophn1 sit helplessly in that room without trying to leave. Van Aelst wanted to figure out why.

Her lab developed a way to delete the Ophn1 gene in different brain regions. They found that removing Ophn1 from the prelimbic region of the medial prefrontal cortex (mPFC), an area known to influence behavioral responses and emotion, induced the helpless phenotype. Then the team figured out which brain circuit was disrupted by deleting Ophn1, creating overactivity in the brain region and ultimately the helpless phenotype.

New “Key-Hole Surgery” Technique to Extract Metals From the Earth – Could Revolutionize the Future of Mining

A team of international researchers, including Dr. Rich Crane from the Camborne School of Mines, University of Exeter, have developed a new method to extract metals, such as copper, from their parent ore body.

The research team has provided a proof of concept for the application of an electric field to control the movement of an acid within a low permeability copper-bearing ore deposit to selectively dissolve and recover the metal in situ.

This is in contrast to the conventional approach for the mining of such deposits where the material must be physically excavated, which requires removal of both overburden and any impurities within the ore (known as gangue material).

My Theory & The Future Of Aging | Prof George Church Interview Series Episode 1

7:01 they talk about Church’s comments of ending aging by 2030. Also this appears to be a part one.


In this video Professor Church talks about his theory of aging and touches on his ideas on the future of aging.

George Church is the Robert Winthrop Professor of Genetics at Harvard Medical School, a Professor of Health Sciences and Technology at Harvard and MIT. Professor Church helped initiate the Human Genome Project in 1984 and the Personal Genome Project in 2005. He is widely recognized for his innovative contributions to genomic science and his many pioneering contributions to chemistry and biomedicine. He has co-authored 580 paper, 143 patent publications & the book “Regenesis”.

George Church Links.
Professor Church’s Lab at Harvard.
https://arep.med.harvard.edu/

Professor Church’s Book on Amazon.