Toggle light / dark theme

2020 is officially a movie:

Russian hackers are trying to steal COVID-19 vaccine and treatment research from pharmaceutical and academic institutions, according to Britain’s National Cyber Security Centre.


Hackers backed by the Russian state are trying to steal COVID-19 vaccine and treatment research from academic and pharmaceutical institutions around the world, Britain’s National Cyber Security Centre (NCSC) said on Thursday.

The global health crisis is accelerating meta-trends and hurling civilization towards the transhuman future. The disruptors are being disrupted, and the rush is on to digitize and virtualize everything in weeks’ time that otherwise would have taken a few years to play out. Recent surveys show that we have compressed five years in business and consumer digital adoption within a couple of months. https://www.ecstadelic.net/top-stories/the-great-reset-2020-…-look-like

#GreatReset2020


Expert Opinion: We’ll remember this time of tremendous change when we all looked like masked robbers and hijackers, the time of accelerated digital transformation and virtualization, geopolitical polarity, transpired meta-trends such as having more leisur.

https://www.sciencealert.com/a-damaged-human-lung-has-been-r…t-to-a-pig


The sad reality of terminal lung illnesses is that there are simply far more patients than there are donor lungs available. This isn’t just because of the low number of donors, which would be problem enough, but many donor lungs are significantly damaged, rendering them unusable.

By using a new experimental technique, though, such a damaged lung has now been restored to function — by sharing its circulatory system with that of a living pig. This leverages the body’s self-repair mechanisms to exceed the capabilities of current donor lung restoration techniques.

“It is the provision of intrinsic biological repair mechanisms over long-enough periods of time that enabled us to recover severely damaged lungs that cannot otherwise be saved,” say the lead researchers, surgeon Ahmed Hozain and biomedical engineer John O’Neill of Columbia University.

Groups of neurons in the human brain produce patterns of activity that represent information about the stimuli that one is perceiving and then convey these patterns to different brain regions via nerve cell junctions known as synapses. So far, most neuroscience studies have focused on the two primary components of neuron information processing individually (i.e., the representation of stimuli in the form of neural activity and the transmission of this information in networks that model neural interactions), rather than exploring them together.

A team of researchers at the University of Pennsylvania recently reviewed literature investigating each of these two components, in order to develop a holistic framework that better describes how groups of neurons process information. Their paper, published in Nature Neuroscience, introduces a holistic theoretical perspective that could inform future neuroscience research focusing on neural information processing.

“In the past decade or so, neuroscientists have used more sophisticated tools to understand how the represents things that it sees or hears in its environment,” Harang Ju and Danielle Bassett, the two researchers who carried out the study, told Medical Xpress. “Some researchers studied brain representations as single patterns of brain activity, while others studied representations as changing patterns of activity. The aim of our paper was to explore how understanding the brain as a of neural units and their connections could frame the recent developments in a way that helps push the field towards a better understanding of the dynamic nature of neural representations.”

Scientists successfully edited RNA in a living animal in such a way that the repaired RNA then corrected a mutation in a protein that gives rise to a debilitating neurological disorder in people known as Rett syndrome.

The advance by researchers at Oregon Health & Science University publishes in the journal Cell Reports.

“This is the first example of using programmable RNA editing to repair a gene in mouse models of a neurological disease,” said senior author Gail Mandel, Ph.D., senior scientist in the OHSU Vollum Institute. “This gives us an approach that has some traction.”

A new method developed at Cold Spring Harbor Laboratory (CSHL) uses DNA sequencing to efficiently map long-range connections between different regions of the brain. The approach dramatically reduces the cost of mapping brain-wide connections compared to traditional microscopy-based methods.

Neuroscientists need anatomical maps to understand how information flows from one region of the to another. “Charting the cellular connections between different parts of the brain—the connectome—can help reveal how the nervous system processes information, as well as how faulty wiring contributes to and other disorders,” says Longwen Huang, a postdoctoral researcher in CSHL Professor Anthony Zador’s lab. Creating these maps has been expensive and time-consuming, demanding massive efforts that are out of reach for most research teams.

Researchers usually follow neurons’ paths using , which can highlight how individual cells branch through a tangled neural network to find and connect with their targets. But, the palette of fluorescent labels suitable for this work is limited. Researchers can inject different colored dyes into two or three parts of the brain, then trace the connections emanating from those regions. They can repeat this process, targeting new regions, to visualize additional connections. In order to generate a brain-wide map, this must be done hundreds of times, using new research animals each time.

Moderna, Inc.’s COVID-19 vaccine candidate mRNA-1273 will advance to a 30,000-participant Phase III trial later this month, following publication of additional positive Phase I data from a study led by the National Institutes of Health (NIH)’s National Institute of Allergy and Infectious Diseases (NIAID).


Moderna said its closely-watched COVID-19 vaccine candidate mRNA-1273 will advance to a 30,000-participant Phase III trial later this month, following publication of additional positive Phase I data from a study led by the NIH’s National Institute of Allergy and Infectious Diseases (NIAID).

The Phase III “COVE” study (NCT04470427) is expected to begin registration at study centers nationwide beginning on July 21 with study initiation set for six days later. The primary endpoint of the randomized, 1:1 placebo-controlled trial will be the prevention of symptomatic COVID-19 disease. Key secondary endpoints include prevention of severe COVID-19 disease as defined by the need for hospitalization, and prevention of infection by SARS-CoV-2, Moderna said.

Moderna disclosed plans for the Phase III trial on Clinicaltrials.gov the same day that researchers from NIAID, Moderna, and their clinical research partners reported that mRNA-1273 induced rapid and strong immune responses against SARS-CoV-2, in an interim analysis of results from their Phase I study (NCT04283461).

Scientists from Trinity College Dublin have discovered a new link between impaired brain energy metabolism and delirium—a disorienting and distressing disorder particularly common in the elderly and one that is currently occurring in a large proportion of patients hospitalized with COVID-19 [15th of July 2020].

While much of the research was conducted in mice, additional work suggests overlapping mechanisms are at play in humans because cerebrospinal fluid (CSF) collected from patients suffering from delirium also contained tell-tale markers of altered brain glucose .

Collectively, the research, which has just been published in the Journal of Neuroscience, suggests that therapies focusing on brain energy metabolism may offer new routes to mitigating delirium.

No industry will be spared.


The pharmaceutical business is perhaps the only industry on the planet, where to get the product from idea to market the company needs to spend about a decade, several billion dollars, and there is about 90% chance of failure. It is very different from the IT business, where only the paranoid survive but a business where executives need to plan decades ahead and execute. So when the revolution in artificial intelligence fueled by credible advances in deep learning hit in 2013–2014, the pharmaceutical industry executives got interested but did not immediately jump on the bandwagon. Many pharmaceutical companies started investing heavily in internal data science R&D but without a coordinated strategy it looked more like re-branding exercise with the many heads of data science, digital, and AI in one organization and often in one department. And while some of the pharmaceutical companies invested in AI startups no sizable acquisitions were made to date. Most discussions with AI startups started with “show me a clinical asset in Phase III where you identified a target and generated a molecule using AI?” or “how are you different from a myriad of other AI startups?” often coming from the newly-minted heads of data science strategy who, in theory, need to know the market.

However, some of the pharmaceutical companies managed to demonstrate very impressive results in the individual segments of drug discovery and development. For example, around 2018 AstraZeneca started publishing in generative chemistry and by 2019 published several impressive papers that were noticed by the community. Several other pharmaceutical companies demonstrated impressive internal modules and Eli Lilly built an impressive AI-powered robotics lab in cooperation with a startup.

However, it was not possible to get a comprehensive overview and comparison of the major pharmaceutical companies that claimed to be doing AI research and utilizing big data in preclinical and clinical development until now. On June 15th, one article titled “The upside of being a digital pharma player” got accepted and quietly went online in a reputable peer-reviewed industry journal Drug Discovery Today. I got notified about the article by Google Scholar because it referenced several of our papers. I was about to discard the article as just another industry perspective but then I looked at the author list and saw a group of heavy-hitting academics, industry executives, and consultants: Alexander Schuhmacher from Reutlingen University, Alexander Gatto from Sony, Markus Hinder from Novartis, Michael Kuss from PricewaterhouseCoopers, and Oliver Gassmann from University of St. Gallen.