Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1552

Oct 7, 2020

Terahertz zaps alter gene activity in stem cells

Posted by in categories: biotech/medical, materials

Terahertz light pulses change gene expression in stem cells, report researchers from Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) and Tokai University in Japan in the journal Optics Letters. The findings come thanks to a new tool, with implications for stem cell research and regenerative therapy development.

Terahertz waves fall in the far infrared/microwave part of the electromagnetic spectrum and can be produced by powerful lasers. Scientists have used terahertz pulses to control the properties of solid-state materials. They also have potential for manipulating living cells, as they don’t damage them the way that ultraviolet or infrared light does. Research so far has led to contradictory findings about their effects on cells, possibly because of the way the experiments have been conducted.

ICeMS microengineer Ken-ichiro Kamei and physicist Hideki Hirori worked with colleagues to develop a better tool for investigating what happens when terahertz pulses are shone on . The apparatus overcomes issues with previous techniques by placing cells in tiny microwells that have the same area as the terahertz light.

Oct 7, 2020

French And U.S. Scientists Win Nobel In Chemistry For Work In Genome Editing

Posted by in categories: biotech/medical, chemistry

The Nobel Prize in Chemistry has been awarded to Emmanuelle Charpentier and Jennifer A. Doudna for the development of a method for genome editing.


Emmanuelle Charpentier (left), and Jennifer Doudna, are the sixth and seventh women to win the prestigious award.

Oct 6, 2020

Liz Parrish online talk during RAADfest 2020

Posted by in categories: biotech/medical, life extension

Watch Liz Parrish’s talk given on Sunday October 4, 2020, during the celebration of the annual event “Revolution Against Aging and Death Festival” (RAADfest 2020).

During her presentation Liz describes for the first time what BioViva Sciences and its exclusive partner Integrated Health Systems (IHS), are doing on the fronts of 1) Patient Access: 2) Research & Development and 3) Data Science.

Continue reading “Liz Parrish online talk during RAADfest 2020” »

Oct 6, 2020

How machine learning is powering collective pandemic intelligence

Posted by in categories: biotech/medical, robotics/AI

From predicting viral load to identifying antiviral drugs, discover some of the AI projects working to fight COVID-19.


What can AI do in the race to contain COVID-19 and potential future pandemics? Discover how machine learning is powering collective pandemic intelligence.

Oct 6, 2020

Process for Regenerating Neurons in the Eye and Brain Identified

Posted by in categories: biotech/medical, neuroscience

Summary: Researchers have identified a network of genes in Zebrafish that regulate the process of determining whether certain neurons will regenerate.

Source: University of Notre Dame

The death of neurons, whether in the brain or the eye, can result in a number of human neurodegenerative disorders, from blindness to Parkinson’s disease. Current treatments for these disorders can only slow the progression of the illness, because once a neuron dies, it cannot be replaced.

Oct 6, 2020

Genetic Factor Discovery Enables Adult Skin to Regenerate Like a Newborn Baby’s

Posted by in categories: biotech/medical, genetics, life extension

A newly identified genetic factor allows adult skin to repair itself like the skin of a newborn babe. The discovery by Washington State University researchers has implications for better skin wound treatment as well as preventing some of the aging process in skin.

In a study, published in the journal eLife on September 29, 2020, the researchers identified a factor that acts like a molecular switch in the skin of baby mice that controls the formation of hair follicles as they develop during the first week of life. The switch is mostly turned off after skin forms and remains off in adult tissue. When it was activated in specialized cells in adult mice, their skin was able to heal wounds without scarring. The reformed skin even included fur and could make goosebumps, an ability that is lost in adult human scars.

“We were able to take the innate ability of young, neonatal skin to regenerate and transfer that ability to old skin,” said Ryan Driskell, an assistant professor in WSU’s School of Molecular Biosciences. “We have shown in principle that this kind of regeneration is possible.”

Oct 5, 2020

Neuroscientists discover a molecular mechanism that allows memories to form

Posted by in categories: biotech/medical, genetics, neuroscience

When the brain forms a memory of a new experience, neurons called engram cells encode the details of the memory and are later reactivated whenever we recall it. A new MIT study reveals that this process is controlled by large-scale remodeling of cells’ chromatin.

This remodeling, which allows involved in storing memories to become more active, takes place in multiple stages spread out over several days. Changes to the density and arrangement of chromatin, a highly compressed structure consisting of DNA and proteins called histones, can control how active specific genes are within a given cell.

“This paper is the first to really reveal this very mysterious process of how different waves of genes become activated, and what is the epigenetic mechanism underlying these different waves of gene expression,” says Li-Huei Tsai, the director of MIT’s Picower Institute for Learning and Memory and the senior author of the study.

Oct 5, 2020

Infrared Snake Eyes: TRPA1 and the Thermal Sensitivity of the Snake Pit Organ

Posted by in category: biotech/medical

Circa 2010


The pit organs of pit vipers, pythons, and boas are remarkable sensory devices that allow these snakes to detect infrared radiation emitted by warm-blooded prey. It has been theorized that this capacity reflects the pit organ’s exceptional sensitivity to subtle fluctuations in temperature, but the molecules responsible for this extreme thermal resolution have been unknown. New evidence shows that pit organs respond to temperature using the warmth-activated cation channel TRPA1 (transient receptor potential ankyrin 1), a finding that provides a first glimpse of the underlying molecular hardware. The properties of these snake TRPA1s raise intriguing questions about the mechanisms responsible for the exceptional sensitivity of many biological thermoreceptors and about the evolutionary origins of these warmth-activated TRP channels.

Oct 5, 2020

A quantum leap In the drug development world

Posted by in categories: biotech/medical, computing

Microfluidic chips that simulate human tissue enable us to conduct medical experiments in ways that could not have been even imagined only a few years ago. Two leading Israeli researchers report from the turbulent Israeli front line of the global ‘organ-on-a-chip’ sector.

Oct 5, 2020

High throughput screening identifies molecules that reduce cellular stress

Posted by in categories: biotech/medical, life extension

For many, getting older can unfortunately mean an increased risk of illness from cardiovascular disease to cancer. University of Michigan scientists are actively researching the biological underpinnings of aging with the aim of developing interventions that could potentially help people live longer, healthier lives.

A new paper in the journal Science Advances describes the discovery of several promising small molecules that appear to reduce in mouse skin and could lengthen life.

“Cellular resistance appears to be a common feature of long-lived organisms, such as invertebrates and mice,” says the paper’s lead author David Lombard, M.D., Ph.D., associate professor of pathology. Lombard is part of a multidisciplinary group at U-M’s Paul F. Glenn Center for Aging. Recent research from colleague and fellow study author Richard Miller, M.D., Ph.D., found several promising drugs, including rapamycin, a cancer drug, and acarbose, a diabetes drug, that extended life in mice.