Toggle light / dark theme

Probing the Secrets to Human Longevity with Methuselah Flies

In the 1980s, biologist Dr Michael Rose started to selectively breed Drosophila fruit flies for increased longevity. Today, the descendants of the original Methuselah flies are held by biotech firm Genescient Corporation and live 4.5 times longer than normal fruit flies.

The flies’ increased lifespan is explained by a significant number of systemic genetic changes — but how many of these variations represent lessons that can be used to design longevity therapies for humans? Dr. Ben Goertzel and his bio-AI colleagues at SingularityNET and Rejuve. AI are betting the answer is quite a few.

SingularityNET and Rejuve. AI have launched a partnership with Genescient to apply advanced machine learning and machine reasoning methods to transfer insights gained from the Methuselah fly genome to the human genome. The goal is to acquire new information regarding gene therapies, drugs or nutraceutical regimens for prolonging healthy human life.

‘Zombie Cells’ Are Still Alive but Can’t Function, and They Accumulate as We Age

Damage to the ends of your chromosomes can create “zombie cells” that are still alive but can’t function, according to our recently published study in Nature Structural and Molecular Biology.

When cells prepare to divide, their DNA is tightly wound around proteins to form chromosomes that provide structure and support for genetic material. At the ends of these chromosomes are repetitive stretches of DNA called telomeres that form a protective cap to prevent damage to the genetic material.

However, telomeres shorten each time a cell divides. This means that as cells divide more and more as you age, your telomeres become increasingly shorter and more likely to lose their ability to protect your DNA.

New supramolecular plastic heals itself in an instant

Scientists experimenting with next-generation plastics at Finland’s University of Turku have developed a form of the material with some impressive capabilities, most notably an ability to quickly break down after use. The eco-friendly “supramolecular” plastic is therefore highly recyclable and, with careful tuning of its water content, can be turned into an adhesive or even instantly self-heal when damaged.

The reason conventional plastics persist in the environment for so long is the incredibly strong chemical connections between the monomers within them. These particles link up to form polymers through what are known as covalent bonds, but scientists hope to fashion more environmentally forms of the material based on non-covalent bonds instead.

These weaker connections are better suited to degradation and recycling of the material, but do come at a cost in terms of mechanical performance. We have looked at some interesting examples of these “supramolecular” materials in the form of hybrid polymers for drug delivery, self-assembling plastics and adhesives that work at extreme temperatures.

The Power of Brain-Computer Interfaces | TVS

A Brain-Computer Interface (BCI) is a promising technology that has received increased attention in recent years. BCIs create a direct link from your brain to a computer. This technology has applications to many industries and sectors of our life. BCIs redefine how we approach medical treatment and communication for individuals with various conditions or injuries. BCIs also have applications in entertainment, specifically video games and VR. From being able to control a prosthetic limb with your mind, to being able to play a video game with your mind—the potential of BCIs are endless.

What are your thoughts on Brain-Computer Interfaces? Let us know!
Any disruptive technologies you would like us to cover? Dm us on our Instagram (@toyvirtualstructures).
—————–
Check out our curated playlists:
https://www.youtube.com/channel/UCr5Akn6LhGDin7coWM7dfUg/playlists.
—————–
Media Used:

Tom Oxley | TED

—————–
Want more content?
Check us out at:
Instagram: @toyvirtualstructures.
Twitter: @web3tvs

‘Jurassic Park’? Scientists want to resurrect Australia’s Tasmanian tiger

Is de-extinction realistic?

Scientists in the US and Australia have announced a multi-million dollar project — resurrecting the extinct Tasmanian tiger. The last known marsupial officially called a thylacine, died in the 1930s. According to the team, the extinct thylacine can be recreated using stem cells and gene-editing technology, and the first one could be “reintroduced” to the wild within 10 years.

We would strongly advocate that first and foremost we need to protect our biodiversity from further extinctions, but unfortunately we are not seeing a slowing down in species loss.


TIGGR Lab.

The last known marsupial officially called a thylacine, died in the 1930s. According to the team, the extinct thylacine can be recreated using stem cells and gene-editing technology, and the first one could be reintroduced to the wild within 10 years.

Senolytics rejuvenate the regenerative capacity of the heart

Speaking at the Longevity Leaders conference earlier this year, King’s College London Professor Georgina Ellison-Hughes shared a fascinating insight into her work to establish the adult heart as a self-renewing organ with regenerative capacity.

Longevity. Technology: The heart is generally considered a “post-mitotic” organ, or one without regenerative capacity. As we age and encounter chronic disease, senescent cells accumulate in the heart, just as they do in other tissues and organs. Ellison-Hughes’ work has shown that cellular senescence may impact the efficacy of regenerative therapies, and that senolytics have the potential to rejuvenate the heart’s capacity to regenerate. We caught up with the professor to learn more.

Cellular senescence is one of the nine hallmarks of aging. It occurs when our cells stop reproducing and enter a zombie state where they refuse to die – hanging around and causing problems throughout our bodies. Ellison-Hughes is professor of regenerative muscle physiology at King’s and in 2019 was co-author of a study in Aging Cell, which found that senescent cells impaired regeneration in the human heart.

Scientists Want to Block Out the Sun. Should We? Is it Even Possible?

Iron could massively boost ocean algae populations.

Scientists suggest we could fertilize the world’s oceans with iron to fight climate change. Iron would lead to phytoplankton blooms, which would help to pull carbon dioxide out of the atmosphere.

One “very conservative” estimate suggests a gigaton of carbon dioxide could be removed per year with this method.

Scientists have hatched a plan to flood the world’s oceans with phytoplankton in a bid to avoid the worst effects of climate change.


Scientists are seriously considering blocking out the Sun. To be more precise, they want to reflect a fraction of the sunlight that reaches Earth back out into the Solar System via a method called solar geoengineering.