Toggle light / dark theme

Documentary spurs a new look at the case of the first gene-edited babies

In the four years since an experiment by disgraced scientist He Jiankui resulted in the birth of the first babies with edited genes, numerous articles, books and international commissions have reflected on whether and how heritable genome editing—that is, modifying genes that will be passed on to the next generation—should proceed. They’ve reinforced an international consensus that it’s premature to proceed with heritable genome editing. Yet, concern remains that some individuals might buck that consensus and recklessly forge ahead—just as He Jiankui did.

Immune Surprise: Key Alarm Protein Drives Inflammation

An important breakthrough in understanding how inflammation is regulated has been made by scientists from Trinity College Dublin. They have just discovered that a key immune alarm protein previously believed to calm down the immune response actually does the opposite.

Their work has numerous potential impacts, especially in the context of understanding and responding to autoimmune disorders and inflammation.

Our immune system serves a very important function in protecting us from infection and injury. However, when immune responses become too aggressive this can lead to damaging inflammation, which occurs in conditions such as rheumatoid arthritis and psoriasis. Inflammation is triggered when our bodies produce “alarm proteins” (interleukins), which ramp up our defenses against infection and injury by switching on different components of our immune system.

Study identifies key neurons that maintain normal body temperature in mammals

A research group at Nagoya University in Japan has reported that a group of neurons, called EP3 neurons, in the preoptic area of the brain play a key role in regulating body temperature in mammals. The finding could pave the way for the development of a technology that artificially adjusts body temperature to help treat heat stroke, hypothermia, and even obesity. The new study was published in the journal Science Advances.

Body temperature in humans and many other mammals is regulated at about 37°C (98.6°F), which optimizes all regulatory functions. When body temperature noticeably deviates from the normal range, functions are impaired, which could lead to , hypothermia, and, in the worst case, death. However, these conditions might be treated if body temperature can be artificially adjusted to the normal range.

The brain’s temperature regulation center resides in the preoptic area, a part of the hypothalamus that controls the body’s vital functions. For example, when the preoptic area receives signals from a mediator called prostaglandin E (PGE2) that is produced in response to infections, this area releases a command to raise body temperature to fight against viruses, bacteria, and other disease-causing organisms.

Flu Virus 101 | National Geographic

The influenza virus is an recurring nightmare, killing thousands of people each year. Learn how the virus attacks its host, why it’s nearly impossible to eradicate, and what scientists are doing to combat it.
➡ Subscribe: http://bit.ly/NatGeoSubscribe.

About National Geographic:
National Geographic is the world’s premium destination for science, exploration, and adventure. Through their world-class scientists, photographers, journalists, and filmmakers, Nat Geo gets you closer to the stories that matter and past the edge of what’s possible.

Get More National Geographic:
Official Site: http://bit.ly/NatGeoOfficialSite.
Facebook: http://bit.ly/FBNatGeo.
Twitter: http://bit.ly/NatGeoTwitter.
Instagram: http://bit.ly/NatGeoInsta.

Read more in “Viruses, explained“
https://on.natgeo.com/2CNhb22

Flu Virus 101 | National Geographic.
National Geographic.
https://www.youtube.com/natgeo

How nanomaterial influences gut microbiome, immune system: Research

“This shows that we must factor the gut microbiome into our understanding of how nanomaterials affect the immune system,” said the paper’s corresponding author Bengt Fadeel, professor at the Institute of Environmental Medicine, Karolinska Institutet. “Our results are important for identifying the potential adverse effects of nanomaterial and mitigating or preventing such effects in new materials.”

ALSO READ: Researchers reveal tomatoes’ health benefits to gut microbes

Graphene is an extremely thin material, a million times thinner than a human hair. It comprises a single layer of carbon atoms and is stronger than steel yet flexible, transparent, and electrically conductive. This makes it extremely useful in a multitude of applications, including in “smart” textiles equipped with wearable electronics and as a component of composite materials, to enhance the strength and conductivity of existing materials.

Software lets researchers create tiny rounded objects out of DNA. Here’s why that’s cool

Marvel at the tiny nanoscale structures emerging from research labs at Duke University and Arizona State University, and it’s easy to imagine you’re browsing a catalog of the world’s smallest pottery.

A new paper reveals some of the teams’ creations: itty-bitty vases, bowls, and hollow spheres, one hidden inside the other, like housewares for a Russian nesting doll.

But instead of making them from wood or clay, the researchers designed these objects out of threadlike molecules of DNA, bent and folded into complex three-dimensional objects with nanometer precision.

New Blood Test Accurately Predicts Alzheimer’s Years Ahead of First Symptoms

A new type of blood test can detect a hidden toxin behind Alzheimer’s disease years before a patient shows any symptoms of memory loss or confusion.

If the proof-of-concept can be further tested and scaled, the test could significantly speed up diagnosis, giving millions of patients answers and access to proper care long before their disease progresses.

Researchers at the University of Washington (UW) created the novel blood test. It’s designed to pick up on a molecular precursor in the blood that can cause proteins to irregularly fold and clump in the brain, ultimately forming amyloid beta (Aβ) plaques.

/* */