Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1231

Dec 3, 2021

Preventing Cancer Metastatis

Posted by in category: biotech/medical

Cancer biologist Yibin Kang has disabled a key cancer gene MTDH in mice and in human tissue. A human treatment will be ready for human trials in a few years.

This could be the key to preventing or stopping cancer metastasis which is the primary cause of death due to cancer.

99% of breast cancer patients survive five years after diagnosis, only 29% do if the cancer has metastasized, according to current numbers from the National Cancer Institute.

Dec 3, 2021

Smallest Gadget Ever Made — Devices made by AI

Posted by in categories: biotech/medical, privacy, robotics/AI

Scientists with the help of next gen Artificial Intelligence managed to create the smallest and most efficient camera in the world. A specialist medical camera that measures just under a nanometer has just entered the Guinness Book of Records. The size of the grain of sand, it is the camera’s tiny sensor that is actually being entered into the world-famous record book, for being the smallest commercially available image sensor.

TIMESTAMPS:
00:00 A new leap in Material Science.
00:57 How this new technology works.
03:45 Artificial Intelligence and Material Science.
06:00 The Privacy Concerns of Tiny Cameras.
07:45 Last Words.

#ai #camera #technology

Dec 3, 2021

Can Science Survive the Death of the Universe?

Posted by in categories: biotech/medical, climatology, cosmology, ethics, neuroscience, particle physics, science, sustainability

Let me back up a moment. I recently concurred with megapundit Steven Pinker that over the last two centuries we have achieved material, moral and intellectual progress, which should give us hope that we can achieve still more. I expected, and have gotten, pushback. Pessimists argue that our progress will prove to be ephemeral; that we will inevitably succumb to our own nastiness and stupidity and destroy ourselves.

Maybe, maybe not. Just for the sake of argument, let’s say that within the next century or two we solve our biggest problems, including tyranny, injustice, poverty, pandemics, climate change and war. Let’s say we create a world in which we can do pretty much anything we choose. Many will pursue pleasure, finding ever more exciting ways to enjoy themselves. Others may seek spiritual enlightenment or devote themselves to artistic expression.

No matter what our descendants choose to do, some will surely keep investigating the universe and everything in it, including us. How long can the quest for knowledge continue? Not long, I argued 25 years ago this month in The End of Science, which contends that particle physics, cosmology, neuroscience and other fields are bumping into fundamental limits. I still think I’m right, but I could be wrong. Below I describe the views of three physicists—Freeman Dyson, Roger Penrose and David Deutsch—who hold that knowledge seeking can continue for a long, long time, and possibly forever, even in the face of the heat death of the universe.

Dec 3, 2021

The future of CRISPR is now

Posted by in categories: biotech/medical, futurism

CRISPR is revolutionizing experimental therapies, but where should society draw the line?

Dec 2, 2021

We may be one step closer to storing data in DNA

Posted by in categories: biotech/medical, computing

Researchers at Microsoft have developed a faster way to write data into DNA — a biological alternative to the bits on a hard drive.

Dec 2, 2021

Anti-obesity drug discovery: advances and challenges

Posted by in category: biotech/medical

The development of therapies that are capable of safely achieving sizeable and sustained body weight loss has proved tremendously challenging. Here, Müller et al. provide an overview of the history of anti-obesity drug development, focusing on lessons learned, ongoing challenges and recent advances in the field.

Dec 2, 2021

David Sinclair || Why We Age and Why We Don’t Have To

Posted by in categories: biotech/medical, evolution, genetics, life extension

In this episode, I talk to world-renowned biologist David Sinclair about aging and longevity. David rejects the notion that the deterioration of health is a natural part of growing old and asserts that aging is a disease itself that we need to reverse. But how will a reset of our biological clocks affect our interactions, responses to adversity, morality, and how we live our lives? We discuss the ethical implications of limitless lifespans and also touch on the topics of death, evolution, genetics, medicine, and data tracking.

Bio.
Dr. David Sinclair is a professor in the department of genetics and co-director of the Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School and co-founder of the scientific journal Aging. He is best known for his work on understanding why we age and how to slow its effects. In addition to being a co-founder of several biotechnology companies, he’s the author of the book Lifespan: Why We Age – and Why We Don’t Have To. Dr. Sinclair was listed by TIME magazine as one of the “100 most influential people in the world”.

Continue reading “David Sinclair || Why We Age and Why We Don’t Have To” »

Dec 2, 2021

Regenerative Nanotransfection: Innovative Nanochip Can Reprogram Biological Tissue in Living Body

Posted by in categories: biotech/medical, health, neuroscience

A silicon device that can change skin tissue into blood vessels and nerve cells has advanced from prototype to standardized fabrication, meaning it can now be made in a consistent, reproducible way. As reported in Nature Protocols, this work, developed by researchers at the Indiana University School of Medicine, takes the device one step closer to potential use as a treatment for people with a variety of health concerns.

The technology, called tissue nanotransfection, is a non-invasive nanochip device that can reprogram tissue function by applying a harmless electric spark to deliver specific genes in a fraction of a second. In laboratory studies, the device successfully converted skin tissue into blood vessels to repair a badly injured leg. The technology is currently being used to reprogram tissue for different kinds of therapies, such as repairing brain damage caused by stroke or preventing and reversing nerve damage caused by diabetes.

Dec 2, 2021

World’s first living robots can now reproduce, scientists say

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Bongard said they found that the xenobots, which were initially sphere-shaped and made from around 3,000 cells, could replicate. But it happened rarely and only in specific circumstances. The xenobots used “kinetic replication” — a process that is known to occur at the molecular level but has never been observed before at the scale of whole cells or organisms, Bongard said.


The US scientists who created the first living robots say the life forms, known as xenobots, can now reproduce — and in a way not seen in plants and animals.

Formed from the stem cells of the African clawed frog (Xenopus laevis) from which it takes its name, xenobots are less than a millimeter (0.04 inches) wide. The tiny blobs were first unveiled in 2020 after experiments showed that they could move, work together in groups and self-heal.

Continue reading “World’s first living robots can now reproduce, scientists say” »

Dec 2, 2021

Scientists develop ‘lab on a chip’ that costs 1 cent to make

Posted by in categories: biotech/medical, electronics

Circa 2017


“Enabling early detection of diseases is one of the greatest opportunities we have for developing effective treatments,” Esfandyarpour said. “Maybe $1 in the U.S. doesn’t count that much, but somewhere in the developing world, it’s a lot of money.”

Continue reading “Scientists develop ‘lab on a chip’ that costs 1 cent to make” »