Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1177

Aug 20, 2021

Researchers discover hidden SARS-CoV-2 ‘gate’ that opens to allow COVID infection

Posted by in categories: biotech/medical, chemistry, computing

Since the early days of the COVID pandemic, scientists have aggressively pursued the secrets of the mechanisms that allow severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter and infect healthy human cells.

Early in the pandemic, University of California San Diego’s Rommie Amaro, a computational biophysical chemist, helped develop a detailed visualization of the SARS-CoV-2 spike protein that efficiently latches onto our cell receptors.

Now, Amaro and her research colleagues from UC San Diego, University of Pittsburgh, University of Texas at Austin, Columbia University and University of Wisconsin-Milwaukee have discovered how glycans–molecules that make up a sugary residue around the edges of the spike protein–act as infection gateways.

Continue reading “Researchers discover hidden SARS-CoV-2 ‘gate’ that opens to allow COVID infection” »

Aug 20, 2021

AI Blood Test Can Spot Lung Cancers With 90 Percent Accuracy

Posted by in categories: biotech/medical, robotics/AI

Researchers at the Baltimore-based biotech company Delfi Diagnostics have developed a machine learning-based blood testing technology that could greatly help detect early stages of lung cancer.


The researchers are hoping that improved screening and detection technologies could allow more cases of lung cancer to be spotted earlier, which could greatly improve outcomes.

“These results suggest that the Delfi lung cancer screening technology could help reduce lung cancer deaths by offering a convenient, high-performing test to people who are [United States Preventive Services Taskforce] eligible,” Delfi CMO Peter Bach said in a statement.

Continue reading “AI Blood Test Can Spot Lung Cancers With 90 Percent Accuracy” »

Aug 20, 2021

New clue to human evolution’s biggest mystery emerges in Philippines

Posted by in categories: biotech/medical, evolution, genetics, sex

Denisovan DNA lives on in some humans today because, once our Homo sapien ancestors encountered the Denisovans, they had sex with them and gave birth to babies — something geneticists call admixture. By analyzing current-day genetic data, we can look back into human history.


Geneticists have found that a Philippine ethnic group known as the Ayta Magbukon has the highest level of Denisovan ancestry in the world.

Aug 20, 2021

Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology, neuroscience

I am pleased to announce that my lead-author review paper has been published in ACS Nano! If you are interested in learning about the convergence of synthetic biology and adenoviral gene therapy, I encourage you to check out my paper.

If you cannot access the full text, I have also posted a local copy at the following link: https://logancollinsblog.files.wordpress.com/2021/08/synthet…s-2021.pdf.

#ACS #ACSNano #SyntheticBiology #GeneTherapy #Biology #Biotech #Science #Biotechnology #Nanotechnology #Adenovirus #Engineering #Virology

Continue reading “Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies” »

Aug 20, 2021

Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our 3D-bioink platform and in orthotopic cancer mouse models as opposed to 2D culture on rigid plastic plates. Our 3D-bioprinted model could be the basis for potentially replacing cell cultures and animal models as a powerful platform for rapid, reproducible, and robust target discovery; personalized therapy screening; and drug development.

Cancer is the second leading cause of death globally. It is estimated that around 30 to 40% of patients with cancer are being treated with ineffective drugs ; therefore, preclinical drug screening platforms attempt to overcome this challenge. Several approaches, such as whole-exome or RNA sequencing (RNA-seq), aim to identify druggable, known mutations or overexpressed genes that may be exploited as a therapeutic target for personalized therapy. More advanced approaches offer to assess the efficacy of a drug or combinations of drugs in patient-derived tumor xenograft models or in vitro three-dimensional (3D) organoids. Unfortunately, most of the existing methods face unmet challenges, which limit their efficacy. For instance, cells can become quiescent or acquire somatic mutations while growing many generations on plastic under the influence of static mechanical forces and in the absence of functional vasculature.

Aug 20, 2021

CRISPR pioneer Feng Zhang’s latest work delivers mRNA, gene therapy with a human protein

Posted by in categories: biotech/medical, genetics, nanotechnology

COVID-19 mRNA vaccines and existing gene therapies, including those built with the CRISPR-Cas9 gene-editing tool, are delivered into cells with viral vectors or lipid nanoparticles. A research team led by CRISPR pioneer Feng Zhang, Ph.D., of the Broad Institute has developed a new mRNA delivery system that harnesses a human protein.

The system, dubbed SEND, leverages the ability of a human protein called PEG10 to bind to its own mRNA and form a protective capsule around it. In a new study published in Science, Zhang and colleagues engineered PEG10 to take on RNA cargoes of their choice and successfully delivered the system to mouse and human cells.

The findings support SEND as an efficient delivery platform for RNA-based gene therapies that can be repeatedly dosed, the researchers suggested. Because SEND uses a protein that’s produced naturally in the body, it may not trigger immune responses that can render gene therapies ineffective, the team said.

Aug 20, 2021

Research Shows Extensive Damage Caused by Common Teeth-Whitening Products

Posted by in categories: biotech/medical, health

Why are products sold that have not been fully tested for safety and public health?


A study led by researchers at the University of Toronto highlights the extensive damage that can be caused by common teeth-whitening agents.

Published recently in Nature Scientific Reports, the study assessed the dental cell damage caused by the use of carbamide peroxide teeth-whitening treatments.

Continue reading “Research Shows Extensive Damage Caused by Common Teeth-Whitening Products” »

Aug 20, 2021

Researchers reveal new insights on mechanism that could help treat muscle-related diseases

Posted by in categories: biotech/medical, chemistry, life extension, neuroscience

Investigators who previously developed a recipe for turning skin cells into primitive muscle-like cells that can be maintained indefinitely in the lab without losing the potential to become mature muscle have now uncovered how this recipe works and what molecular changes it triggers within cells. The research, which was led by scientists at Massachusetts General Hospital (MGH) and is published in Genes & Development, could allow clinicians to generate patient-matched muscle cells to help treat muscle injuries, aging-related muscle degeneration, or conditions such as muscular dystrophy.

It’s known that expression of a regulatory gene called MyoD is sufficient to directly convert into mature ; however, mature muscle do not divide and self-renew, and therefore they cannot be propagated for clinical purposes. “To address this shortcoming, we developed a system several years ago to convert skin cells into self-renewing muscle stem-like cells we coined induced myogenic progenitor cells, or iMPCs. Our system uses MyoD in combination with three chemicals we previously identified as facilitators of cell plasticity in other contexts,” explains senior author Konrad Hochedlinger, Ph.D., a principal investigator at the Center for Regenerative Medicine at MGH and a professor of medicine at Harvard Medical School.

In this latest study, Hochedlinger and his colleagues uncovered the details behind how this combination converts skin cells into iMPCs. They found that while MyoD expression alone causes skin cells to take on the identity of mature muscle cells, adding the three chemicals causes the skin cells to instead acquire a more primitive stem cell–like state. Importantly, iMPCs are molecularly highly similar to muscle tissue stem cells, and muscle cells derived from iMPCs are more stable and mature than muscle cells produced with MyoD expression alone.

Aug 20, 2021

Vitamins K1 And K2 Are Associated With Cardiovascular Disease-Related Hospitalization Risk

Posted by in categories: biotech/medical, food, health

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Vitamin K Intake and Atherosclerotic Cardiovascular Disease in the Danish Diet Cancer and Health Study.
https://pubmed.ncbi.nlm.nih.gov/34369182/

Continue reading “Vitamins K1 And K2 Are Associated With Cardiovascular Disease-Related Hospitalization Risk” »

Aug 20, 2021

Alibaba’s AI machine beats humans in computer vision test

Posted by in categories: biotech/medical, robotics/AI

VQA technology can be used in a wide range of areas, including searches for products on e-commerce sites and supporting analysis of medical images.