Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1127

Mar 9, 2022

Could gene therapy soon curb muscle loss in the elderly?

Posted by in categories: biotech/medical, health

Researchers at NTNU have managed to restore muscle function in older mice with muscle loss using advanced gene therapy. The hope is that this method might eventually be used on humans to prevent severe loss of muscle mass.

“Gene therapy is the most effective method to be able to give these people the same health benefits you normally get with physical exercise,” says Moreira, who has been involved in the new research. He is part of the Cardiac Exercise Research Group (CERG).

Mar 9, 2022

Cellular ‘Rejuvenation’ Experiment in Mice Reverses Signs of Aging, Scientists Say

Posted by in categories: biotech/medical, life extension

With age comes experience. And with experience come sore backs, tired bones, and increased risks from a large number of diseases.

Scientists have long been trying figure out how to stop these aches and pains in our twilight years, and to make us live longer and healthier lives at the same time.

While it’s likely a long way off from being ready for humans, a new study investigating the long-term ‘partial reprogramming’ of cells in mice appears to have produced some very intriguing results.

Mar 9, 2022

DNA Replication Speed Limit Could Be a Breakthrough for Stem Cell Therapy

Posted by in categories: biotech/medical, innovation

Adult cells in our body can only give rise to the same cell type. For example, a skin cell cannot give rise to a muscle cell but to skin cells only. This limits the potential use of adult cells for therapy. During early development, however, the cells in the embryo have the capacity to generate all cell types of our body, including stem cells. This capacity, which is called totipotency, has served as an inspiration for researchers to find new ways to recapitulate totipotency through cellular reprogramming in the lab.

Totipotent cells have their own speed

Totipotent cells have many properties, but we do not know all of them yet. Researchers at Helmholtz Munich have now made a new discovery: “We found out that in totipotent cells, the mother cells of stem cells, DNA replication occurs at a different pace compared to other more differentiated cells. It is much slower than in any other cell type we studied,” says Tsunetoshi Nakatani, first-author of the new study.

Mar 9, 2022

Australian researchers announce lithium-sulfur battery breakthrough

Posted by in categories: biotech/medical, engineering

Researchers have restored muscle function in research animals with gene therapy. The approach could someday lead to new treatment methods in the elderly.


From pv magazine Australia

A team of researchers from Monash University’s Faculty of Engineering have redesigned the heart of a lithium-sulfur battery, creating a new interlayer that allows for exceptionally fast lithium transfer, as well as an improvement in the performance and lifetime of the batteries.

Continue reading “Australian researchers announce lithium-sulfur battery breakthrough” »

Mar 7, 2022

Researchers Discover How the Human Brain Separates, Stores, and Retrieves Memories

Posted by in categories: biotech/medical, health, neuroscience

NIH-funded study identifies brain cells that form boundaries between discrete events.

Researchers have identified two types of cells in our brains that are involved in organizing discrete memories based on when they occurred. This finding improves our understanding of how the human brain forms memories and could have implications in memory disorders such as Alzheimer’s disease. The study was supported by the National Institutes of Health’s Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative and published in Nature Neuroscience.

“This work is transformative in how the researchers studied the way the human brain thinks,” said Jim Gnadt, Ph.D., program director at the National Institute of Neurological Disorders and Stroke and the NIH BRAIN Initiative. “It brings to human neuroscience an approach used previously in non-human primates and rodents by recording directly from neurons that are generating thoughts.”

Mar 7, 2022

Formlabs Launches Glass Filled Nylon 12 for SLS 3D Printing

Posted by in categories: 3D printing, biotech/medical, cyborgs, engineering

Not long ago, Formlabs launched a new ESD Resin specifically for applications that need to keep parts safe from electrostatic discharge (ESD). Now, the double unicorn has announced the latest member of its selective laser sintering (SLS) range of materials—the new high-performance Nylon 12 GF Powder. Good for 3D printing engineering and manufacturing functional prototypes and end-use parts that require thermal stability and structural rigidity, the newly launched material offers excellent stiffness and is the latest meant for use with the Formlabs Fuse 1 industrial SLS 3D printer, which was released last year.

Formlabs’ Nylon 12 GF powder makes it possible to 3D print parts that are thermally stable, and can maintain their dimensional accuracy under load. In the past, glass-filled Nylon materials have been used for a variety of applications, such as 3D printing a scale model, a prosthetic drum stick, a bike rack, loudspeakers, and even a bar! This particular material—one of many Formlabs is planning to introduce for its industrial Fuse 1 3D printer—is said to be a good choice for printing threads and sockets, strong jigs and fixtures, parts subjected to high temperatures and sustained loading, functional prototypes for compsite parts, and replacement parts.

Mar 7, 2022

Harnessing AI and Robotics to Treat Spinal Cord Injuries

Posted by in categories: biotech/medical, robotics/AI

Researchers have successfully stabilized an enzyme that is able to degrade scar tissue as a result of… See more.


Summary: Researchers have successfully stabilized an enzyme that is able to degrade scar tissue as a result of spinal cord injury with the help of AI and robotics.

Source: Rutgers

Continue reading “Harnessing AI and Robotics to Treat Spinal Cord Injuries” »

Mar 7, 2022

Anti-aging molecules safely reset mouse cells to youthful states

Posted by in categories: biotech/medical, chemistry, genetics, life extension, neuroscience

One of the especially promising therapies to appear in the realm of anti-aging research involves a set of molecules known as Yamanaka factors, which scientists have deployed to rejuvenate aging cells, trigger muscle regeneration and tackle glaucoma. New research at the Salk Institute has sought to build on these short-term and specific use cases by demonstrating how these molecules can reverse signs of aging in middle-aged and elderly mice, with no evidence of health problems following the extended treatment.

The Yamanaka factors at the center of this study are a set of four reprogramming molecules that can reset the molecular clock found in the cells of the body. They do so by returning unique patterns of chemicals known as epigenetic markers, which evolve through aging, to their original states.

Continue reading “Anti-aging molecules safely reset mouse cells to youthful states” »

Mar 7, 2022

How Renewable Energy Could Emerge on Top After the Pandemic

Posted by in categories: biotech/medical, economics, solar power, sustainability

Circa 2020


The short-term prospects for wind and solar power look rocky amid the economic upheaval of the coronavirus. But long term, renewables could emerge stronger than ever, especially if governments integrate support for clean energy into Covid-19 economic-recovery programs.

Mar 7, 2022

Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens

Posted by in category: biotech/medical

Circa 2012


Hydrogen sulphide (H2S) is a colourless gas with the odour of rotten eggs and has recently been recognized as a signal mediator in physiological activities related with the regulation of homeostasis, the vascular system and the inflammatory system. Here we show that H2S donors, including sodium hydrogen sulphide (NaHS), GYY 4137 and diallyltrisulfide (DATS), synergistically enhanced the anti-cancer effect of a green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) against multiple myeloma cells without affecting normal cells. NaHS significantly potentiated the anti-cancer effect of EGCG and prolonged survival in a mouse xenograft model. In this mechanism, H2S enhanced apoptotic cell death through cyclic guanosine monophosphate (cGMP)/acid sphingomyelinase pathway induced by EGCG.