Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1063

Feb 10, 2022

The last century revealed our DNA’s secrets and lingering mysteries

Posted by in category: biotech/medical

The Human Genome Project received a lot of media attention from scientific journals and the mainstream press.

Left to right: Time July 3, 2000; Science February 16, 2001; Nature February 15, 2001.

Green: Or sloppy transcription, that our enzymes are just going off and making a bunch of RNA because they don’t know how to control themselves. And it’s just garbage. But, no. And I like your point about 20 years ago, we couldn’t imagine. I would propose that 20 years from now, we might look back at this conversation and say, ‘Oh, my goodness, think about all these other ways that the genome functions.’ There’s no reason to think we have our hands around it all in terms of all the biological complexity of DNA; I’m quite sure we don’t.

Feb 9, 2022

Study raises new possibilities for triggering room-temperature superconductivity with light

Posted by in categories: biotech/medical, materials

Much like people can learn more about themselves by stepping outside of their comfort zones, researchers can learn more about a system by giving it a jolt that makes it a little unstable—scientists call this “out of equilibrium”—and watching what happens as it settles back down into a more stable state.

In the case of a known as yttrium barium copper oxide, or YBCO, experiments have shown that under certain conditions, knocking it out of equilibrium with a laser pulse allows it to superconduct—conduct electrical current with no loss—at much closer to room than researchers expected. This could be a big deal, given that scientists have been pursuing room-temperature superconductors for more than three decades.

But do observations of this unstable state have any bearing on how high-temperature superconductors would work in the real world, where applications like power lines, maglev trains, particle accelerators and medical equipment require them to be stable?

Feb 9, 2022

“Mini-Brains” Grown in a Lab Provide Clues About Early Life Origins of Schizophrenia

Posted by in categories: biotech/medical, genetics, neuroscience

Multiple changes in brain cells during the first month of embryonic development may contribute to schizophrenia later in life, according to a new study by Weill Cornell Medicine investigators.

The researchers, whose study was published in Molecular Psychiatry, used stem cells collected from patients with schizophrenia and people without the disease to grow 3-dimensional “mini-brains” or organoids in the laboratory. By comparing the development of both sets of organoids, they discovered that a reduced expression of two genes in the cells stymies early development and causes a shortage of brain cells in organoids grown from patient stem cells.

“This discovery fills an important gap in scientists’ understanding of schizophrenia,” said senior author Dr. Dilek Colak, assistant professor of neuroscience at the Feil Family Brain and Mind Institute and the Center for Neurogenetics at Weill Cornell Medicine. Symptoms of schizophrenia typically develop in adulthood, but postmortem studies of the brains of people with the disease found enlarged cavities called ventricles and differences in the cortical layers that likely occurred early in life.

Feb 9, 2022

Inspired by insects, engineers create spiky materials that could pop bacteria

Posted by in categories: biotech/medical, chemistry

Researchers have created intricately patterned materials that mimic antimicrobial, adhesive and drag reducing properties found in natural surfaces.

The team from Imperial College London found inspiration in the wavy and spiky surfaces found in insects, including on cicada and dragonfly wings, which ward off .

They hope the new could be used to create self-disinfecting surfaces and offer an alternative to chemically functionalized surfaces and cleaners, which can promote the growth of antibiotic-resistant bacteria.

Feb 9, 2022

Babies of the future could be made from skin cells

Posted by in categories: biotech/medical, engineering

Still from the future.


A potential fertility treatment involves taking skin cells and reverse engineering them into eggs and sperm.

Feb 9, 2022

Using Viruses to Fight Antibiotic-Resistant Infections

Posted by in category: biotech/medical

This Yale researcher is creating an experimental therapy for cystic fibrosis made from viruses — and it’s working.

Feb 9, 2022

New brain imaging technique suggests memories are stored in the connections between your neurons

Posted by in categories: biotech/medical, computing, neuroscience

All memory storage devices, from your brain to the RAM in your computer, store information by changing their physical qualities. Over 130 years ago, pioneering neuroscientist Santiago Ramón y Cajal first suggested that the brain stores information by rearranging the connections, or synapses, between neurons.

Since then, neuroscientists have attempted to understand the physical changes associated with memory formation. But visualizing and mapping synapses is challenging to do. For one, synapses are very small and tightly packed together. They’re roughly 10 billion times smaller than the smallest object a standard clinical MRI can visualize. Furthermore, there are approximately 1 billion synapses in the mouse brains researchers often use to study brain function, and they’re all the same opaque to translucent color as the tissue surrounding them.

Continue reading “New brain imaging technique suggests memories are stored in the connections between your neurons” »

Feb 9, 2022

Planting trees in pastureland provides significant cooling in the tropics

Posted by in categories: biotech/medical, materials

Farmers struggling to adapt to rising temperatures in tropical regions can unleash the benefits of natural cooling, alongside a host of other wins, simply by dotting more trees across their pasturelands. For the first time, a study led by the University of Washington puts tangible numbers to the cooling effects of this practice.

Researchers at the UW and The Nature Conservancy, along with Duke University, the University of California San Diego and Stony Brook University Hospital, find that adding trees to pastureland, technically known as silvopasture, can cool local temperatures by up to 2.4 C (4.3 F) for every 10 metric tons of woody material added per hectare (about 4 tons per acre) depending on the density of trees, while also delivering a range of other benefits for humans and wildlife.

The paper was published Feb. 4 in Nature Communications.

Feb 9, 2022

Researchers develop methodology for streamlined control of material deformation

Posted by in categories: biotech/medical, mathematics, robotics/AI

Can you crumple up two sheets of paper the exact same way? Probably not—the very flexibility that lets flexible structures from paper to biopolymers and membranes undergo many types of large deformations makes them notoriously difficult to control. Researchers from the Georgia Institute of Technology, Universiteit van Amsterdam, and Universiteit Leiden have shed new light on this fundamental challenge, demonstrating that new physical theories provide precise predictions of the deformations of certain structures, as recently published in Nature Communications.

In the paper, Michael Czajkowski and D. Zeb Rocklin from Georgia Tech, Corentin Coulais from Universiteit van Amsterdam, and Martin van Hecke of AMOLF and Universiteit Leiden approach a highly studied exotic elastic material, uncover an intuitive geometrical description of the pronounced—or nonlinear—soft deformations, and show how to activate any of these deformations on-demand with minimal inputs. This new theory reveals that a flexible mechanical structure is governed by some of the same math as electromagnetic waves, phase transitions, and even black holes.

“So many other systems struggle with how to be strong and solid in some ways but flexible and compliant in others, from the human body and micro-organisms to clothing and industrial robots,” said Rocklin. “These structures solve that problem in an incredibly elegant way that permits a single folding mechanism to generate a wide family of deformations. We’ve shown that a single folding mode can transform a structure into an infinite family of shapes.”

Feb 9, 2022

New set of chemical building blocks makes complex 3D molecules in a snap

Posted by in categories: biotech/medical, chemistry, robotics/AI

A new set of molecular building blocks aims to make complex chemistry as simple and accessible as a toy construction kit.

Researchers at the University of Illinois Urbana-Champaign and collaborators at Revolution Medicines Inc. developed a new class of chemical building blocks that simply snap together to form 3D with complex twists and turns, and an automated machine to assemble the blocks like a 3D printer for molecules.

This automation could allow chemists and nonchemists alike to develop new pharmaceuticals, materials, diagnostic probes, catalysts, perfumes, sweeteners and more, said study leader Dr. Martin D. Burke, a professor of chemistry at Illinois and a member of the Carle Illinois College of Medicine, as well as a medical doctor. The researchers reported their findings in the journal Nature.