Toggle light / dark theme

Stroke: Changes in blood vessels offer new targets for treatment

A stroke occurs when an artery in the brain becomes blocked or bursts. The brain cells beyond the blockage or bleed are deprived of oxygen and nutrients, so are damaged or die.

Scientists have been trying to find ways to minimize the damage following a stroke and speed up recovery.

Now, a study led by scientists from Weill Cornell Medicine has found changes in gene activity in small blood vessels following a stroke. The findings suggest that these changes could be targeted with existing or future drugs to mitigate brain injury or improve stroke recovery.

Exploring the mechanisms underpinning individual differences in autism spectrum disorder using machine learning

Autism spectrum disorder (ASD) is a developmental disorder associated with difficulties in interacting with others, repetitive behaviors, restricted interests and other symptoms that can impact academic or professional performance. People diagnosed with ASD can present varying symptoms that differ in both their behavioral manifestations and intensity.

As a result, some often require far more support than others to complete their studies, learn new skills and lead a fulfilling life. Neuroscientists have been investigating the high variability of ASD for several decades, with the hope that this will aid the development of more effective therapeutic strategies tailored around the unique experiences of different patients.

Researchers at Weill Cornell Medicine have recently used machine learning to investigate the molecular and neural mechanisms that could underlie these differences among individuals diagnosed with ASD. Their paper, published in Nature Neuroscience, identifies different subgroups of ASD associated with distinct functional connections in the brain and symptomatology, which could be related to the expression of different ASD-related genes.

Mini brains grown in the lab sprout primitive “eyes”

Organoids aren’t nearly as complex as their full-sized counterparts, but they’re useful for research — scientists can study organ development, monitor disease progression, and even test new treatments on them.

What’s new: When human embryos are about five weeks old, they develop structures called “optic cups” that will eventually become retinas.

Researchers have grown optic cups in the lab before, and they’ve also grown mini brains. Now, researchers at University Hospital Düsseldorf have grown brain organoids with optic cups.

Mind-Body Connection Is Built Into Brain

Summary: Brain areas that control movement are plugged into networks that orchestrate thinking and planning, and control involuntary bodily functions. The findings provide a link between the body and the “mind” in the brain’s structure.

Source: WUSTL

Calm body, calm mind, say the practitioners of mindfulness. A new study by researchers at Washington University School of Medicine in St. Louis indicates that the idea that the body and mind are inextricably intertwined is more than just an abstraction.

Hidden Linkages: Scientists Find Mind-Body Connection Is Built Into Brain

Findings point to brain areas that integrate planning, purpose, physiology, behavior, and movement.

Calm body, calm mind, say the practitioners of mindfulness. A new study by researchers at Washington University School of Medicine in St. Louis indicates that the idea that the body and mind are inextricably intertwined is more than just an abstraction. The study shows that parts of the brain area that control movement are plugged into networks involved in thinking and planning, and in control of involuntary bodily functions such as blood pressure and heartbeat. The findings represent a literal linkage of body and mind in the very structure of the brain.

The research, published on April 19 in the journal Nature, could help explain some baffling phenomena, such as why anxiety makes some people want to pace back and forth; why stimulating the vagus nerve, which regulates internal organ functions such as digestion and heart rate, may alleviate depression; and why people who exercise regularly report a more positive outlook on life.

A light switch for neurons

Ed Boyden shows how, by inserting genes for light-sensitive proteins into brain cells, he can selectively activate or de-activate specific neurons with fiber-optic implants. With this unprecedented level of control, he’s managed to cure mice of analogs of PTSD and certain forms of blindness. On the horizon: neural prosthetics. Session host Juan Enriquez leads a brief post-talk Q&A.

Billionaire Li Ka-Shing Backs Biocomputing Startup That Takes On AI With Lab-Grown Brain Cells

Cortical Labs, an Australian startup developing a new type of artificial intelligence that combines lab-grown human brain cells with computer chips, has raised $10 million in a funding round led by Horizons Ventures, the private investment arm of Hong Kong’s richest person, Li Ka-shing.

Blackbird Ventures, Australia’s leading venture capital fund, has also taken part in the financing round, Cortical Labs said in a statement on Wednesday. Other investors include In-Q-Tel, the venture capital arm of the Central Intelligence Agency, as well as U.S.-based LifeX Ventures and Australia-headquartered Radar Ventures, among others.

Cortical Labs said it will use the capital to commercialize its biological computer chips—human brain cells derived from stem cells that are grown on top of microelectrode arrays. Cortical Labs refers to their system as DishBrain, and says it’s capable of performing goal-directed tasks.