Toggle light / dark theme

The demo is clever, questionably real, and prompts a lot of questions about how this device will actually work.

Buzz has been building around the secretive tech startup Humane for over a year, and now the company is finally offering a look at what it’s been building. At TED last month, Humane co-founder Imran Chaudhri gave a demonstration of the AI-powered wearable the company is building as a replacement for smartphones. Bits of the video leaked online after the event, but the full video is now available to watch.

The device appears to be a small black puck that slips into your breast pocket, with a camera, projector, and speaker sticking out the top. Throughout the 13-minute presentation, Chaudhri walks through a handful of use cases for Humane’s gadget: * The device rings when Chaudhri receives a phone call. He holds his hand up, and the device projects the caller’s name along with icons to answer or ignore the call. He then has a brief conversation. (Around 1:48 in the video) * He presses and holds one finger on the device, then asks a question about where he can buy a gift. The device responds with the name of a shopping district. (Around 6:20) * He taps two fingers on the device, says a sentence, and the device translates the sentence into another language, stating it back using an AI-generated clone of his voice. (Around 6:55) * He presses and holds one finger on the device, says, “Catch me up,” and it reads out a summary of recent emails, calendar events, and messages. (At 9:45) * He holds a chocolate bar in front of the device, then presses and holds one finger on the device while asking, “Can I eat this?” The device recommends he does not because of a food allergy he has. He presses down one finger again and tells the device he’s ignoring its advice. (Around 10:55)

Chaudhri, who previously worked on design at Apple for more than two decades, pitched the device as a salve for a world covered in screens. “Some believe AR / VR glasses like these are the answer,” he said, an image of VR headsets behind him. He argued those devices — like smartphones — put “a further barrier between you and the world.”

Humane’s device, whatever it’s called, is designed to be more natural by eschewing the screen. The gadget operates on its own. “You don’t need a smartphone or any other device to pair with it,” he said.

The world’s first flexible, transparent augmented reality (AR) display screen using 3D printing and low-cost materials has been created by researchers at the University of Melbourne, KDH Design Corporation and the Melbourne Centre for Nanofabrication (MCN). The development of the new display screen is set to advance how AR is used across a wide range of industries and applications.

AR overlays digital content onto the , enhancing the user’s real-time perception and interaction with their environment. Until now, creating flexible AR technology that can adjust to different angles of light sources has been a challenge, as current mainstream AR manufacturing uses glass substrates, which must undergo photomasking, lamination, cutting, or etching microstructure patterns. These time-consuming processes are expensive, have a poor yield rate and are difficult to seamlessly integrate with product appearance designs.

Led by University of Melbourne researchers Associate Professor Ranjith Unnithan, Professor Christina Lim and Professor Thas Nirmalathas, in collaboration with Taiwanese KDH Design Corporation, the team has successfully developed a transparent AR display screen using low-cost, optical-quality polymer and plastic—a first-of-its-kind achievement in the field of AR displays.

Perhaps your real life is so rich you don’t have time for another.

Even so, the US Department of Defense (DOD) may already be creating a copy of you in an alternate reality to see how long you can go without food or water, or how you will respond to televised propaganda.

The DOD is developing a parallel to Planet Earth, with billions of individual “nodes” to reflect every man, woman, and child this side of the dividing line between reality and AR.

In a new study in Nature Machine Intelligence, researchers Bojian Yin and Sander Bohté from the HBP partner Dutch National Research Institute for Mathematics and Computer Science (CWI) demonstrate a significant step towards artificial intelligence that can be used in local devices like smartphones and in VR-like applications, while protecting privacy.

They show how brain-like neurons combined with novel learning methods enable training fast and energy-efficient spiking on a large scale. Potential applications range from wearable AI to and Augmented Reality.

While modern artificial neural networks are the backbone of the current AI revolution, they are only loosely inspired by networks of real, biological neurons such as our brain. The brain however is a much larger network, much more energy-efficient, and can respond ultra-fast when triggered by external events. Spiking neural networks are special types of neural networks that more closely mimic the working of biological neurons: the neurons of our nervous system communicate by exchanging electrical pulses, and they do so only sparingly.

Neural networks are distributed computing structures inspired by the structure of a biological brain and aim to achieve cognitive performance comparable to that of humans but in a much shorter time.

These technologies now form the basis of machine learning and that can perceive the environment and adapt their own behavior by analyzing the effects of previous actions and working autonomously. They are used in many areas of application, such as speech and image recognition and synthesis, autonomous driving and augmented reality systems, bioinformatics, genetic and molecular sequencing, and high-performance computing technologies.

Compared to conventional computing approaches, in order to perform complex functions, neural networks need to be initially “trained” with a large amount of known information that the network then uses to adapt by learning from experience. Training is an extremely energy-intensive process and as computing power increases, the neural networks’ consumption grows very rapidly, doubling every six months or so.

Join top executives in San Francisco on July 11–12, to hear how leaders are integrating and optimizing AI investments for success. Learn More

In January, new reports on Apple’s long-awaited augmented reality/virtual reality headset were released. And if what’s in these reports is even partially true, Apple is poised to give the world one of the most jaw-dropping, powerful pieces of technology in history (again) — which is why it was a bit surprising that this news didn’t make more of a splash.

This is the same company that has fans enter lotteries for tickets to corporate keynote addresses! Yet, outside of the usual tech blogs and a few newspaper columns, the future of Apple’s AR/VR device went largely unnoticed.

Meta CEO Mark Zuckerberg says he isn’t abandoning the metaverse, even as the division of the company that manages its virtual and augmented reality projects lost $4 billion in the first quarter.

Recent comments by Zuckerberg and other Meta leaders have suggested that the company is going bullish on AI and switching its strategy away from the metaverse. Top Meta execs are now spending most of their time focused on AI, CTO Andrew Bosworth said earlier this month.

“A narrative has developed that we’re somehow moving away from focusing on the metaverse vision,” Zuckerberg told investors on Wednesday. “So I just want to say upfront that, that’s not accurate. We’ve been focusing on both AI and the Metaverse for years now, and we will continue to focus on both.”

Vrgineers and Advanced Realtime Tracking demonstrate the combination of XTAL 3 headset and SMARTTRACK3/M in a mixed reality pilot trainer. The partnership between these two technological companies started in 2018. At IT2EC 2023 in Rotterdam, the integrated SMARTTRACK3/M into an F-35-like Classroom Trainer manufactured and delivered to USAF and RAF will be for display. This unique combination of the latest ART infrared all-in-one hardware and Vrgineers algorithms for cockpit motion compensation creates an unseen immersion for every mixed reality training. One of the challenges in next-generation pilot training using virtual technology and motion platforms is the alignment of the pilot’s position in the cockpit. By overcoming this issue, the simulator industry is moving forward to eliminate the disadvantages of simulated training.

“We are continuously working on removing the technological challenges of modern simulators, one of which is caused by front-facing camera position distance from users’ eyes. We are developing advanced algorithms for motion compensation to minimize the shift between virtual and physical scene, making experience realistic. The durability and compact size of SMARTTRACK3/M, which was optimized for using in cockpits, allows us as training device integrator to make it a comprehensive part of a simulation,” says Marek Polcak, CEO of Vrgineers.

“This is the application SMARTTRACK3/M was designed for., We have taken the proven hardware from the SMARTTRACK3 and adapted it to the limited space available. As a result, we have the precision and the reliability of a seasoned system in a form factor fitting to simulator cockpits” says Andreas Werner, business development manager for simulations at ART.

https://youtube.com/watch?v=I3WVc9iLi_s&feature=share

This video explores Age Reversal and 10 ways they will change the world. Watch this next video about digital immortality: https://youtu.be/sZdWN9pbbew.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

Official Discord Server: https://discord.gg/R8cYEWpCzK
Patreon Page: https://www.patreon.com/futurebusinesstech.

💡 Future Business Tech explores the future of technology and the world.

Examples of topics I cover include: