Menu

Blog

Page 610

Jun 30, 2024

The 5th Industrial Revolution

Posted by in categories: biological, existential risks, space travel, sustainability

In this episode of the 5th Industrial Revolution VODcast we sit down with Dr. Jordan Okie of Arizona State University School of Earth and Space Exploration to discuss a key relevancy to the next industrial revolution, sustainability, through the lens of Dr. Okie’s area of expertise: Ecology and Biology. Our key takeaways: We are in a race against time and extinction. We will need to find a way to evolve through technology to survive, be it here on Earth or in our exploration of Space.

Jun 29, 2024

Study reveals significant differences in RNA editing between postmortem and living human brain

Posted by in categories: biotech/medical, neuroscience

Researchers from the Icahn School of Medicine at Mount Sinai have shed valuable light on the nuanced functions and intricate regulatory methods of RNA editing, a critical mechanism underlying brain development and disease.

In a study published June 26 in Nature Communications, the team reported finding major differences between postmortem and living prefrontal cortex brain tissues as they relate to one of the most abundant RNA modifications in the brain, known as adenosine-to-inosine (A-to-I) editing.

This discovery will play a significant role in shaping the development of diagnostics and therapies for .

Jun 29, 2024

Researchers find brains can tune their navigation system without landmarks

Posted by in categories: biological, engineering, neuroscience

Johns Hopkins research sheds new light on how mammals track their position and orientation while moving, revealing that visual motion cues alone allow the brain to adjust and recalibrate its internal map even in the absence of stable visual landmarks.

Their results are published in Nature Neuroscience.

“When you move through space, you have a lot of competing telling you where you are and how fast you are going, and your brain has to make sense of that,” said study co-leader Noah Cowan, professor of mechanical engineering at the Whiting School of Engineering and director of the Locomotion in Mechanical and Biological Systems (LIMBS) Laboratory.

Jun 29, 2024

Beyond the Standard Model: New Spin-Spin-Velocity Experiments Could Rewrite Physics Textbooks

Posted by in categories: cosmology, particle physics, quantum physics

A research team led by Academician Du Jiangfeng and Professor Rong Xing from the University of Science and Technology of China (USTC), part of the Chinese Academy of Sciences (CAS), in collaboration with Professor Jiao Man from Zhejiang University, has used solid-state spin quantum sensors to examine exotic spin-spin-velocity-dependent interactions (SSIVDs) at short force ranges. Their study reports new experimental findings concerning interactions between electron spins and has been published in Physical Review Letters.

The Standard Model is a very successful theoretical framework in particle physics, describing fundamental particles and four basic interactions. However, the Standard Model still cannot explain some important observational facts in current cosmology, such as dark matter and dark energy.

Some theories suggest that new particles can act as propagators, transmitting new interactions between Standard Model particles. At present, there is a lack of experimental research on new interactions related to velocity between spins, especially in the relatively small range of force distance, where experimental verification is almost non-existent.

Jun 29, 2024

Graphene Nanolayers Reinvented: The Key to Advanced Electronics

Posted by in categories: materials, particle physics

Graphene, composed of layers of carbon atoms arranged in a honeycomb pattern, is recognized as a supermaterial due to its exceptional conductivity and mechanical advantages. These properties are key to advancing flexible electronics, innovative batteries, and composite materials for aerospace applications. Despite these benefits, creating elastic and durable films has been difficult. In a recent edition of Angewandte Chemie, researchers have proposed a solution by connecting graphene nanolayers through extendable bridging structures, potentially overcoming previous limitations.

The special capabilities of microscopic graphene nanolayers often drop off when the layers are assembled into foils, because they are only held together by relatively weak interactions—primarily hydrogen bonds. Approaches that attempt to improve the mechanical properties of graphene foils by introducing stronger interactions have only been partially successful, leaving particular room for improvement in the stretchability and toughness of the materials.

Jun 29, 2024

Unlocking Earth’s Origins: Nitrogen Isotopes Reveal Planetary Secrets

Posted by in categories: evolution, space

This research highlights that both early melting-volatilization and late accretion of volatile-rich materials are integral to understanding the distribution of nitrogen in silicate Earth. These insights open new avenues for understanding the origins of volatiles on Earth.

A team of researchers led by Professor Wang Wenzhong from the University of Science and Technology of China’s School of Earth and Space Sciences, in partnership with international experts, examined how nitrogen isotopes fractionate during the formation and evolution of terrestrial planets. Their findings were published in Nature Communications.

Currently, the academic community primarily holds two models regarding the accretion of volatiles on Earth: the “Late Veneer” model and the “Early Evolution” model.

Jun 29, 2024

Quantum Annealers Unravel the Mysteries of Many-Body Systems

Posted by in categories: computing, particle physics, quantum physics

Scientists have utilized a quantum annealer to simulate quantum materials effectively, marking a crucial development in applying quantum computing in material science and enhancing quantum memory device performance.

Physicists have long been pursuing the idea of simulating quantum particles with a computer that is itself made up of quantum particles. This is exactly what scientists at Forschungszentrum Jülich have done together with colleagues from Slovenia. They used a quantum annealer to model a real-life quantum material and showed that the quantum annealer can directly mirror the microscopic interactions of electrons in the material. The result is a significant advancement in the field, showcasing the practical applicability of quantum computing in solving complex material science problems. Furthermore, the researchers discovered factors that can improve the durability and energy efficiency of quantum memory devices.

Richard Feynman’s Legacy in Quantum Computing.

Jun 29, 2024

MIT Physicists Forge a Five-Lane Quantum Superhighway for Electrons

Posted by in categories: energy, quantum physics

MIT physicists have developed a new form of graphene, creating a five-lane electron superhighway that allows for ultra-efficient electron movement without energy loss.

This breakthrough in rhombohedral pentalayer graphene could transform low-power electronic devices and operates via the quantum anomalous Hall effect at zero magnetic field.

MIT physicists and their collaborators have created a five-lane superhighway for electrons that could allow ultra-efficient electronics and more.

Jun 29, 2024

The Secret to Resiliency: It’s in Your Gut and Brain

Posted by in categories: biotech/medical, health, neuroscience

A UCLA Health study explored the traits of resilient individuals, discovering significant neural activities in the brain regions for cognition and emotional regulation, and healthy gut microbiome activities.

The research highlighted differences in microbiome metabolites and gene activity, indicating lower inflammation and better gut health in resilient people compared to less resilient individuals. This comprehensive approach may lead to interventions that enhance resilience to stress, possibly preventing various health issues.

Resilience and Health.

Jun 29, 2024

Defying Limits: Discovery of New Membrane Behavior Could Lead to Unprecedented Separations

Posted by in categories: biotech/medical, chemistry, food

Recent research on isoporous membranes, which feature uniformly sized pores, show potential for improving the precision and efficiency of industrial separation processes by allowing solutes multiple attempts to pass through the pores.

Imagine a close basketball game that comes down to the final shot. The probability of the ball going through the hoop might be fairly low, but it would dramatically increase if the player were afforded the opportunity to shoot it over and over.

A similar idea is at play in the scientific field of membrane separations, a key process central to industries that include everything from biotechnology to petrochemicals to water treatment to food and beverage.

Page 610 of 11,987First607608609610611612613614Last