Menu

Blog

Page 2982

Apr 21, 2023

Probing fundamental symmetries of nature with the Higgs boson

Posted by in categories: cosmology, particle physics

Where did all the antimatter go? After the Big Bang, matter and antimatter should have been created in equal amounts. Why we live in a universe of matter, with very little antimatter, remains a mystery. The excess of matter could be explained by the violation of charge-parity (CP) symmetry, which essentially means that certain processes that involve particles behave differently to those that involve their antiparticles.

However, the CP-violating processes that have been observed so far are insufficient to explain the matter–antimatter asymmetry in the universe. New sources of CP violation must be out there—and might be hiding in interactions involving the Higgs boson. In the Standard Model of particle physics, Higgs-boson interactions with other particles conserve CP symmetry. If researchers find signs of CP violation in these interactions, they could be a clue to one of the universe’s oldest mysteries.

In a new analysis of its full dataset from Run 2 of the LHC, the ATLAS collaboration tested the Higgs-boson interactions with the carriers of the weak force, the W and Z bosons, looking for signs of CP violation. The collaboration studied Higgs-boson decays into two Z bosons, each of which transforms into a pair of leptons (an electron and a positron or a muon and an antimuon), thus resulting in four charged leptons. The researchers also studied interactions in which two W or Z bosons combine to produce a Higgs boson. In this case, one quark and one antiquark are produced together with the Higgs boson, creating ‘jets’ of particles in the ATLAS detector.

Apr 21, 2023

Study shows how tiny plastic particles manage to breach the blood-brain barrier

Posted by in categories: biotech/medical, computing, food, neuroscience

Among the biggest environmental problems of our time, micro-and nanoplastic particles (MNPs) can enter the body in various ways, including through food. And now for the first time, research conducted at MedUni Vienna has shown how these minute particles manage to breach the blood-brain barrier and as a consequence penetrate the brain. The newly discovered mechanism provides the basis for further research to protect humans and the environment.

Published in the journal Nanomaterials, the study was carried out in an with oral administration of MNPs, in this case polystyrene, a widely-used plastic which is also found in . Led by Lukas Kenner (Department of Pathology at MedUni Vienna and Department of Laboratory Animal Pathology at Vetmeduni) and Oldamur Hollóczki (Department of Physical Chemistry, University of Debrecen, Hungary) the research team was able to determine that tiny polystyrene particles could be detected in the brain just two hours after ingestion.

The mechanism that enabled them to breach the was previously unknown to medical science. “With the help of computer models, we discovered that a certain (biomolecular corona) was crucial in enabling plastic particles to pass into the brain,” Oldamur Hollóczki explained.

Apr 21, 2023

New Groundbreaking Device Accelerates Artificial Intelligence 🔥

Posted by in category: robotics/AI

In this video I discuss new atomically thin devices — atomristors — which are designed to accelerate computing to the next level!

The Paper: https://www.nature.com/articles/s41586-023-05973-1
Support me at Patreon: https://www.patreon.com/AnastasiInTech

Apr 21, 2023

What If There Was A Vaccine To Reduce Bad Cholesterol?

Posted by in category: biotech/medical

Could a vaccine for dealing with cholesterol be in the works? If clinical trials succeed, Vaxxinity’s new vaccine could be a game changer for this chronic medical condition.


Millions daily take statins to combat high cholesterol. But a vaccine that turns on the body’s natural immune response is in the works.

Apr 21, 2023

‘Wolverine’ can find and fix bugs in your Python code automatically

Posted by in categories: internet, robotics/AI

LumerB/iStock.

According to Hackaday, “BioBootloader,” a programmer, created the program that can grant Python programs “regenerative healing abilities.” The program takes advantage of OpenAI’s GPT-4 multimodal AI language model, released in March and now accessible to ChatGPT Plus users and beta testers via an API. It performs text-processing activities, including authoring, language translation, and programming, using its “knowledge” of billions of documents, books, and webpages scraped from the internet.

Apr 21, 2023

Vladimir Putin is preparing to attack the UK

Posted by in category: mapping

The deployment of his spy ships is chilling. Britain is far from ready to counter whatever he has planned.

For a long time it was only speculation. Now we know for certain: Russian spy ships are mapping wind farms and key cables off the British coast. There can be only one reason for this – to learn how to sabotage UK and European critical infrastructure in the event of a full-scale war with the West.

The sobering truth is that our potential adversaries, Russia in the West and China in the East, are gearing up for wider conflict. That does not mean that conflict will happen –preparation makes it less likely – but we must urgently recognise the extent of the threat to the current order. Our world is becoming markedly more dangerous. And Britain is not ready.

Apr 21, 2023

A team of ex-Apple employees wants to replace smartphones with this AI projector

Posted by in categories: mobile phones, robotics/AI

Humane, a startup that is backed by OpenAI’s CEO and Microsoft, demoed its interface projecting device at TED 2023. Here’s a first look.

Apr 21, 2023

China plans to build moon bases using robot masons and lunar dirt

Posted by in categories: 3D printing, robotics/AI, space travel

The plan: Ding could play a key role in helping China get its future lunar bases off the ground — his research team at HUST has designed several potential moon bases and developed technology that could be used to actually construct them on the moon.

One of those is the “Chinese Super Mason,” an autonomous robot designed to create structures out of bricks. Another is the bricks themselves — Ding’s team has come up with a LEGO-like design for the blocks, which it proposes to make using 3D printing, lasers, and lunar regolith.

They could get a chance to see their ideas put to the ultimate test as soon as 2028, as China reportedly plans to send a Super Mason to the moon to build a lunar brick as part of the Chang’e 8 mission, which is expected to launch in 2028.

Apr 21, 2023

Making better measurements of the composition of galaxies

Posted by in category: space

A study using data from telescopes on Earth and in the sky resolves a problem plaguing astronomers working in the infrared, and could help make better observations of the composition of the universe with the James Webb Space Telescope and other instruments. The work is published April 20 in Nature Astronomy.

“We’re trying to measure the composition of gases inside galaxies,” said Yuguang Chen, a postdoctoral researcher working with Professor Tucker Jones in the Department of Physics and Astronomy at the University of California, Davis.

Most elements other than hydrogen, helium and lithium are produced inside stars, so the composition and distribution of heavier elements—especially the ratio of oxygen to hydrogen—can help astronomers understand how many and what kinds of stars are being formed in a distant object.

Apr 21, 2023

Kaleidoscopic image of a mouse’s brain is 64 million times sharper than a typical MRI

Posted by in categories: biotech/medical, robotics/AI

To improve upon this technology, researchers created a souped-up MRI outfitted with a high-powered 9.4-tesla magnet. (For comparison, most MRIs are equipped with a 1.5-to 3-tesla magnet.) They also added gradient coils that are 100 times stronger than current models and are what create the images, as well as a high-speed computer that is as powerful as approximately 800 laptops, according to the statement.

After scanning the mouse brain, the researchers sent tissue samples to be imaged using a technique called light sheet microscopy, which allowed them to label specific groups of cells in the brain that were then mapped onto the original MRI. These additional steps provided a colorful view of cells and circuits throughout the brain, according to the statement.

The researchers took one set of MRI images that captured how the mouse’s brain-wide connectivity evolved with age. A second group of images showcased brilliantly colored brain connections that highlighted the deterioration of neural networks in a rodent model of Alzheimer’s disease, according to the statement.