Menu

Blog

Archive for the ‘space’ category: Page 53

Jul 3, 2024

Scientists discover way to ‘grow’ sub-nanometer sized transistors

Posted by in categories: computing, nanotechnology, quantum physics, space

A research team led by Director Jo Moon-Ho of the Center for Van der Waals Quantum Solids within the Institute for Basic Science (IBS) has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.

This research appears in Nature Nanotechnology.

Integrated devices based on two-dimensional (2D) semiconductors, which exhibit excellent properties even at the ultimate limit of material thickness down to the atomic scale, are a major focus of basic and applied research worldwide. However, realizing such ultra-miniaturized transistor devices that can control the electron movement within a few nanometers, let alone developing the manufacturing process for these integrated circuits, has been met with significant technical challenges.

Jul 3, 2024

Researchers discover way to ‘grow’ sub-nanometer sized transistors

Posted by in categories: computing, nanotechnology, quantum physics, space

A research team led by Director JO Moon-Ho of the Center for Van der Waals Quantum Solids within the Institute for Basic Science (IBS) has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nanometer (nm). The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.

This research was published in the journal Nature Nanotechnology (“Integrated 1D epitaxial mirror twin boundaries for ultra-scaled 2D MoS 2 field-effect transistors”).

Integrated devices based on two-dimensional (2D) semiconductors, which exhibit excellent properties even at the ultimate limit of material thickness down to the atomic scale, are a major focus of basic and applied research worldwide. However, realizing such ultra-miniaturized transistor devices that can control the electron movement within a few nanometers, let alone developing the manufacturing process for these integrated circuits, has been met with significant technical challenges.

Jul 3, 2024

CNC Dialogues — Georg Northoff & Aldrich Chan: Space, Time, Self & Consciousness

Posted by in categories: physics, space

Dr. Georg Northoff is a neuroscientist, psychiatrist, and philosopher holding doctorates in all three disciplines. In this episode, we begin by discussing the self, and consciousness. We then enter into a dialogue about what he terms the world-brain problem, in contrast to the mind-body problem. He shares what he means by the neuroecological approach, why space and time are central to understanding the mind, and how it has foundational implications to diagnosis, treatment and research. We then talk about the practical implications of his viewpoint, for laymen and professionals alike. We follow by pivoting to cover topics such as the importance of philosophy in science, his stance on free will, and a series of rapid fire bonus questions that you don’t want to miss out on. We end on a review of his journey into becoming an MD, Ph.D, his future projects and words of wisdom for anyone listening. I invite you to skip around if you find any of these topics of particular interest to you.

Website: drchancnc.com.
Instagram: @draldrichan.
Guest website: http://www.georgnorthoff.com/

Continue reading “CNC Dialogues — Georg Northoff & Aldrich Chan: Space, Time, Self & Consciousness” »

Jul 2, 2024

Pioneer Plant for Potential Future Mars Settlement

Posted by in categories: food, space

The study notes, “Our study shows that the environmental resilience of S. caninervis is superior to that of some of highly stress-tolerant microorganisms and tardigrades.”


What plants would be most suitable for a future Mars settlement? This is what a recent study published in The Innovation hopes to address as a team of researchers from the Chinese Academy of Sciences investigated how the desert moss known as Syntrichia caninervis (S. caninervis) can survive extremely harsh conditions, specifically conditions on the planet Mars. This study holds the potential to help researchers, engineers, and future Mars astronauts better understand the types of plants they can grow, and even eat, while living on the Red Planet.

For the study, the researchers subjected S. caninervis to a series of brutal tests, including severe dryness, freezing temperatures, and large doses of gamma radiation, all of which are the environmental conditions on Mars and far harsher than humans and plants can manage. However, the researchers discovered that S. caninervis was able to recover 98 percent of its water loss within seconds after being severely dried out. The moss also achieved full recovery after being subjected to-80 degrees Celsius-112 degrees Fahrenheit) for 3 to 5 years along with-196 degrees Celsius (−320 degrees Fahrenheit) for 15 to 30 days.

Continue reading “Pioneer Plant for Potential Future Mars Settlement” »

Jul 2, 2024

The Milky Way will be visible without a telescope this summer. Here are the key nights to watch for

Posted by in category: space

Summer is the best time to see the Milky Way in the Northern Hemisphere without a telescope. The key is to find clear, dark skies on moonless nights.

Jul 2, 2024

Mission Success: HERA Crew Successfully Completes 45-Day Simulated Journey to Mars

Posted by in categories: habitats, space

Four dedicated explorers—Jason Lee, Stephanie Navarro, Shareef Al Romaithi, and Piyumi Wijesekara—just returned from a 45-day simulated journey to Mars, testing the boundaries of human endurance and teamwork within NASA’s HERA (Human Exploration Research Analog) habitat at Johnson Space Center in Houston.

Their groundbreaking work on HERA’s Campaign 7 Mission 2 contributes to NASA’s efforts to study how future astronauts may react to isolation and confinement during deep-space journeys.

Jul 2, 2024

MMGIS: Open-Source Mapping Interface for Mars Exploration

Posted by in categories: mapping, space

“Every mission is contributing back to the other missions and future missions in terms of new tools and techniques to develop,” said Dr. Fred Calef III. “It’s not just you working on something. It’s being able to share data between people… getting a higher order of science.”


As NASA’s Perseverance rover continues to explore the surface of Mars, an open-source, online mapping software known as Multi-Mission Geographic Information System (MMGIS) has been instrumental in determining the best routes for the car-sized rover and landing sites for its Ingenuity helicopter prior to the latter’s “retirement” but is also available for the public to follow the mission, as well. This software holds the potential to help both scientists and the public explore Mars in new and exciting ways for years to come.

“Maps and images are a common language between different people — scientists, engineers, and management,” said Dr. Nathan Williams, who is a mapping specialist at NASA JPL and was a key player in selecting Jezero Crater as the landing site for the Perseverance rover. “They help make sure everyone’s on the same page moving forward, in a united front to achieve the best science that we can.”

Continue reading “MMGIS: Open-Source Mapping Interface for Mars Exploration” »

Jul 2, 2024

Scientists find desert moss ‘that can survive on Mars’

Posted by in category: space

Moss that grows in Mojave desert and Antarctica may help establish life on the red planet, researchers say.

Jul 1, 2024

Updated software improves slicing for large-format 3D printing

Posted by in categories: 3D printing, computing, space

Researchers at the Department of Energy’s Oak Ridge National Laboratory have developed the first additive manufacturing slicing computer application to simultaneously speed and simplify digital conversion of accurate, large-format three-dimensional parts in a factory production setting.

The technology, known as Slicer 2, can help widen the use of 3D printing for larger objects made from metallic and composite materials. Objects the size of a house and beyond are possible, such as land and aquatic vehicles and aerospace applications that include parts for reusable space vehicles.

Slicing software converts a computer-aided design, or CAD, digital model into a series of two-dimensional layers called slices. It calculates print parameters for each slice, such as printhead path and speed, and saves the information in numerically controlled computer language. The computer file contains instructions for a 3D printer to create a precise 3D version of the image.

Jul 1, 2024

A desert moss that has the potential to grow on Mars

Posted by in categories: habitats, space, sustainability

The desert moss Syntrichia caninervis is a promising candidate for Mars colonization thanks to its extreme ability to tolerate harsh conditions lethal to most life forms. The moss is well known for its ability to tolerate drought conditions, but researchers report in the journal The Innovation that it can also survive freezing temperatures as low as −196°C, high levels of gamma radiation, and simulated Martian conditions involving these three stressors combined. In all cases, prior dehydration seemed to help the plants cope.

“Our study shows that the environmental resilience of S. caninervis is superior to that of some of highly stress-tolerant microorganisms and tardigrades,” write the researchers, who include ecologists Daoyuan Zhang and Yuanming Zhang and botanist Tingyun Kuang of the Chinese Academy of Sciences.

“S. caninervis is a promising candidate pioneer plant for colonizing extraterrestrial environments, laying the foundation for building biologically sustainable human habitats beyond Earth.”

Page 53 of 1,032First5051525354555657Last