Menu

Blog

Archive for the ‘quantum physics’ category: Page 794

Apr 11, 2016

D-Wave Systems is most disruptive company we’ve ever seen, says Paradigm

Posted by in categories: computing, finance, quantum physics, robotics/AI

D-Wave not only created the standard for Quantum Computing; they are the standard for QC in N. America at least. Granted more competitors will enter the field; however, D-Wave is the commercial competitor with proven technology and credentials that others will have to meet up to or excel past to be a real player in the QC landscape.


Burnaby-based D-Wave, which was founded in 1999 as a spin-off from the physics department of the University of British Columbia has become nothing less than the leading repository of quantum computing intellectual property in the world, says the analyst. He thinks D-Wave’s customers will be positioned to gain massive competitive advantages because they will be able to solve problems that normal computers simply can’t, such those in areas such as DNA sequencing, financial analysis, and artificial intelligence.

“We stand at the precipice of a computing revolution,” says Kim. “Processing power is taking a huge leap forward thanks to ingenious innovations that leverage the counter-intuitive and unique properties of the quantum realm. Quantum mechanics, theorized many decades ago, is finally ready for prime time. Imagine, if we could go back to 1946 and have the same foresight with the ENIAC, the first electronic general-purpose computer. ENIAC’s pioneers created a new industry and opened up unimaginable possibilities. The same opportunity exists today with D-Wave Systems. D-Wave is the world’s first quantum computing company and represents the most unique and disruptive company that we have seen in our career.

Continue reading “D-Wave Systems is most disruptive company we’ve ever seen, says Paradigm” »

Apr 10, 2016

The Big Bang: Arriving at the site of creation

Posted by in categories: mathematics, quantum physics, singularity, space

Part 2


In part 1 of the journey, we saw the leading observations that needed explanation. Explanations that we want to do through the theory of relativity and quantum mechanics. No technical and expert knowledge in these theories yet, only scratches of its implications. So let us continue.

THE RELATIVITY THEORY Deducing from the Hubble expansion, the galaxies were close in the distant past but certainly not in this current form as the telescopes now see them receding. In fact, if they were receding it also means they were expanding.

Therefore, when we reverse the receding galaxies into the far distant past they should end up at a point somewhere sometime with the smallest imaginable extension, if that extension is conceivable at all. Scientists call it the singularity, a mathematical deduction from the relativity theory. How did this immeasurable Universe made of clusters of galaxies we now see ever existed in that point called singularity?

Continue reading “The Big Bang: Arriving at the site of creation” »

Apr 10, 2016

Second digital revolution

Posted by in categories: habitats, internet, neuroscience, quantum physics, robotics/AI, security

Many folks talk about the whole AI revolution; and indeed it does change some things and opens the door the for opportunities. However, has it truly changed the under lying technology? No; AI is still reliant on existing digital technology. The real tech revolution will come in the form of Quantum tech over the next 7 to 8 years; and it will change everything in our lives and industry. Quantum will change everything that we know about technology including devices, medical technologies, communications including the net, security, e-currency, etc. https://lnkd.in/bJnS37r


If you were born in the 1970s or 1980s, you probably remember the Jetsons family. The Jetsons are to the future what the Flintstones are to the past. That futuristic lifestyle vision goes back several decades; self-driving vehicles, robotic home helpers and so on. What looked like a cartoon series built on prolific imagination seems somewhat more real today. Newly developed technologies are becoming available and connecting everything to the internet. This is the-internet-of-things era.

These ‘things’ are not new. They are just standard devices – lights, garage doors, kitchen appliances, household appliances – equipped with a little intelligence. Intelligence that is possible thanks to three emerging technologies: sensors to collect information from surroundings; the ability to control something; and communication capability allowing devices to talk to each other.

Continue reading “Second digital revolution” »

Apr 9, 2016

Obama warned by China against undermining ‘national security’ interests

Posted by in categories: cybercrime/malcode, quantum physics

Interesting: China wants more cross sharing of Cyber Security information with US. This will only get more interesting with the advancement of Quantum tech.

Article’s headline “Obama warned by China against undermining ‘national security’ interests”.


He made the remarks while addressing the Korean Peninsula situation in separate meetings here with U.S. President Barack Obama and South Korean President Park Geun-hye on the sidelines of the fourth Nuclear Security Summit (NSS).

Continue reading “Obama warned by China against undermining 'national security' interests” »

Apr 8, 2016

IBM’s brain-inspired chip TrueNorth changes how computers ‘think,’ but experts question its purpose

Posted by in categories: neuroscience, quantum physics, robotics/AI, singularity, supercomputing

I see great potential for the TrueNorth chip as we migrate towards Quantum & Singularity. TrueNorth is an interim chip that assists researchers, engineers, etc. in their efforts to mimic the human brain’s nuero sensors and processing for robotics, BMI technology, etc.


The new IBM supercomputer chip mimics the human brain by using an architecture with 1 million neurons. Nevertheless, its true purpose remains in question for a project with massive public funding.

Read more

Apr 8, 2016

ORNL, UT Team Up on Breakthrough That Could Aid Quantum Computing

Posted by in categories: computing, engineering, particle physics, quantum physics

Another reason for being in east TN this month.


Genevieve Martin/ORNL This rendering illustrates the excitation of a spin liquid on a honeycomb lattice using neutrons. As with many other liquids, it is difficult to see a spin liquid unless it is “splashed,” in this case by neutrons depicted as moving balls. The misaligned and vibrating spin pair in the middle signifies the ephemeral Majorana fermion constantly in motion. The ripples formed when the neutrons hit the spin liquid represent the excitations that are a signature of the Majorana fermions. The atomic structure on the left signifies the honeycomb alpha-ruthenium trichloride, in which each ruthenium atom has a spin and is surrounded by a cage of chlorine atoms.

Researchers from the U.S. Department of Energy’s Oak Ridge National Laboratory and UT’s Department of Materials Science and Engineering and Department of Physics and Astronomy used neutrons to uncover novel behavior in materials that holds promise for quantum computing.

Continue reading “ORNL, UT Team Up on Breakthrough That Could Aid Quantum Computing” »

Apr 8, 2016

Diamonds may be quantum computing’s new best friend

Posted by in categories: computing, quantum physics

And, this time Marylin Monroe isn’t singing this tune; Quantum is.


MIT researchers have announced a new approach that uses diamonds to solve a tricky problem with quantum computers.

Read more

Apr 8, 2016

Quantum dots enhance light-to-current conversion in layered metal dichalcogenide semiconductors

Posted by in categories: computing, electronics, quantum physics, solar power, sustainability

Improving light-sensing devices with Q-Dots.


Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create “hybrids” with enhanced features.

In two just-published papers, scientists from the U.S. Department of Energy’s Brookhaven National Laboratory, Stony Brook University, and the University of Nebraska describe one such approach that combines the excellent light-harvesting properties of quantum dots with the tunable electrical conductivity of a layered tin disulfide semiconductor. The hybrid material exhibited enhanced light-harvesting properties through the absorption of light by the quantum dots and their energy transfer to tin disulfide, both in laboratory tests and when incorporated into electronic devices. The research paves the way for using these materials in optoelectronic applications such as energy-harvesting photovoltaics, light sensors, and light emitting diodes (LEDs).

Continue reading “Quantum dots enhance light-to-current conversion in layered metal dichalcogenide semiconductors” »

Apr 7, 2016

Light and sound waves used to control electron states

Posted by in categories: computing, particle physics, quantum physics

University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems.

The work was done on diamond topped with a layer of zinc oxide containing electrical conductors and performed at a temperature of 8 degrees Kelvin (−445.27 Fahrenheit, −265.15 Celsius) — just above absolute zero.

Using sound waves known as surface acoustic waves to change electron states could foster data transfer between quantum bits, the researcher said. The interaction of qubits, as is the case with binary bits in current computing, is seen as vital in building advanced systems.

Read more

Apr 7, 2016

Quantum simulation 2.0: Atoms chat long distance

Posted by in categories: particle physics, quantum physics

In an international first, a research team of experimental physicists has measured long-range magnetic interactions between ultracold particles confined in an optical lattice. Their work introduces a new control knob to quantum simulation.

Read more