Menu

Blog

Archive for the ‘quantum physics’ category: Page 793

Aug 8, 2016

Will Warp Drive Finally Become A Reality?

Posted by in categories: genetics, quantum physics, space travel

Not so long ago we had to assume that we’ll never be able to travel faster than light. This was based on scientists’ sensible belief that we can travel through space but cannot change the nature of space itself. Then the idea of ‘Warp Drive’ came along to challenge and seemingly change all of the barriers that Einstein’s theory identified. Warp Drive is all about squashing and stretching space — a pretty ambitious task to begin with. So maybe it’s time again to have a look at how far we’ve already come or how close we are to seeing a real warp drive built by humans.

In May 1994, theoretical physicist Miguel Alcubierre finally presented his proposal of “The Warp Drive: Hyper-fast travel within general relativity” in a scientific journal called Classical and Quantum Gravity.

He indeed was inspired by Star Trek and its creator Gene Roddenberry, who famously coined the expression “Warp Drive” to explain the inexplicable propulsion of the Starship Enterprise as prodigious speed was just necessary to enable his fictional space travelers to leap from star to star on their trek.

Read more

Aug 6, 2016

The beginner’s guide to quantum computing

Posted by in categories: computing, quantum physics

It’s complicated. But we can help.

Read more

Aug 6, 2016

New Form Of Light Could Make Study Of Quantum Phenomena Easier

Posted by in categories: materials, quantum physics

In a development that could greatly help the study of quantum phenomena, scientists have created a theoretical model for a new form of light that combines the properties of photons and electrons. If turned into reality, the new light form could also be used to make electrical circuits which at present use electrons for conduction.

Scientists from Imperial College London published a study in the journal Nature Communications on Friday that shows “it is possible to create a new form of light by binding light to a single electron, combining the properties of both,” according to a statement issued by the college.

Light, which is made up of photons, usually interacts with a large number of electrons on the surface of whatever material it comes in contact with. For the study, researchers from Imperial used “a recently discovered class of materials known as topological inhibitors.” Combining that with “theoretical physics to model the behavior of light,” they found that light could interact with only one electron on the surface.

Continue reading “New Form Of Light Could Make Study Of Quantum Phenomena Easier” »

Aug 6, 2016

USC quantum computing researchers reduce quantum information processing errors

Posted by in categories: computing, information science, quantum physics, robotics/AI

Quantum computing remains mysterious and elusive to many, but USC Viterbi School of Engineering researchers might have taken us one step closer to bring such super-powered devices to practical reality. The USC Viterbi School of Engineering and Information Sciences Institute is home to the USC-Lockheed Martin Quantum Computing Center (QCC), a super-cooled, magnetically shielded facility specially built to house the first commercially available quantum optimization processors — devices so advanced that there are currently only two in use outside the Canadian company D-Wave Systems Inc., where they were built: The first one went to USC and Lockheed Martin, and the second to NASA and Google.

Quantum computers encode data in quantum bits, or “qubits,” which have the capability of representing the two digits of one and zero at the same time — as opposed to traditional bits, which can encode distinctly either a one or a zero. This property, called superposition, along with the ability of quantum states to “interfere” (cancel or reinforce each other like waves in a pond) and “tunnel” through energy barriers, is what may one day allow quantum processors to ultimately perform optimization calculations much faster than is possible using traditional processors. Optimization problems can take many forms, and quantum processors have been theorized to be useful for a variety of machine learning and big data problems like stock portfolio optimization, image recognition and classification, and detecting anomalies. Yet, exactly because of the exotic way in which quantum computers process information, they are highly sensitive to errors of different kinds.

Read more

Aug 4, 2016

Hackers could get inside your brain, warns experts

Posted by in categories: cybercrime/malcode, neuroscience, quantum physics

I have reported on this threat for a very long time as we see more BMI technology advance. However, one are where things could drastically reduce hacking and breeches is the migration to a Quantum based net and infrastructure.


Cyberthieves might be mining personal information from your brainwaves at this very moment.

Continue reading “Hackers could get inside your brain, warns experts” »

Aug 4, 2016

New way to model molecules

Posted by in categories: biological, chemistry, computing, encryption, quantum physics, robotics/AI, solar power, sustainability

Magine a future in which hyper-efficient solar panels provide renewable sources of energy, improved water filters quickly remove toxins from drinking water, and the air is scrubbed clean of pollution and greenhouse gases. That could become a reality with the right molecules and materials.

Scientists from Harvard and Google have taken a major step toward making the search for those molecules easier, demonstrating for the first time that a quantum computer could be used to model the electron interactions in a complex molecule. The work is described in a new paper published in the journal Physical Review X by Professor Alán Aspuru-Guzik from the Department of Chemistry and Chemical Biology and several co-authors.

“There are a number of applications that a quantum computer would be useful for: cryptography, machine learning, and certain number-theory problems,” Aspuru-Guzik said. “But one that has always been mentioned, even from the first conceptions of a quantum computer, was to use it to simulate matter. In this case, we use it to simulate chemistry.”

Read more

Aug 4, 2016

Watch opera and quantum computing collide in ‘Superposition’: the most high-tech duet ever

Posted by in categories: computing, quantum physics

Wonder if they’ll come to the Met in NY, or the Hollywood Bowl in CA.


A Welsh mezzo-soprano in England recently performed a real-time duet with a quantum computer. Here’s how it sounded.

Read more

Aug 4, 2016

Google Quantum Computing Breakthrough

Posted by in categories: computing, quantum physics

This is a huge breakthrough for quantum computing.

Read more

Aug 3, 2016

Programmable ions set the stage for general-purpose quantum computers

Posted by in categories: computing, information science, particle physics, quantum physics

Quantum computers promise speedy solutions to some difficult problems, but building large-scale, general-purpose quantum devices is a problem fraught with technical challenges.

To date, many research groups have created small but functional computers. By combining a handful of atoms, electrons or superconducting junctions, researchers now regularly demonstrate quantum effects and run simple —small programs dedicated to solving particular problems.

But these laboratory devices are often hard-wired to run one program or limited to fixed patterns of interactions between the quantum constituents. Making a quantum computer that can run arbitrary algorithms requires the right kind of physical system and a suite of programming tools. Atomic , confined by fields from nearby electrodes, are among the most promising platforms for meeting these needs.

Continue reading “Programmable ions set the stage for general-purpose quantum computers” »

Aug 3, 2016

Quantum Computing Just Grew Way the Hell Up

Posted by in categories: computing, information science, quantum physics

Additional insights on the latest reprogrammable QC.


Researchers implement a key piece of Shor’s algorithm in a programmable quantum computer.

Read more