Menu

Blog

Archive for the ‘quantum physics’ category: Page 384

Jun 7, 2022

Quantum information was teleported over a network for the first time

Posted by in categories: biotech/medical, computing, internet, neuroscience, quantum physics

When Heroes (now streaming on Peacock!) hit the airwaves in September of 2006, few characters were as immediately beloved as the appropriately named Hiro Nakamura. Granted the ability to manipulate space-time, Hiro could not only slow down, speed up, and stop time, he could also teleport from one place to another. That’s a useful skill if you need to get to a specific point in time and space to fight an evil brain surgeon or prevent the end of the world. It’s also useful if you want to build the quantum internet.

Researchers at QuTech — a collaboration between Delft University of Technology and the Netherlands Organization for Applied Scientific Research — recently took a big step toward making that a reality. For the first time, they succeeded in sending quantum information between non-adjacent qubits on a rudimentary network. Their findings were published in the journal Nature.

While modern computers use bits, zeroes, and ones, to encode information, quantum computers us quantum bits or qubits. A qubit works in much the same way as a bit, except it’s able to hold both a 0 and a 1 at the same time, allowing for faster and more powerful computation. The trouble begins when you want to transmit that information to another location. Quantum computing has a communications problem.

Jun 6, 2022

Time crystals ‘impossible’ but obey quantum physics

Posted by in categories: particle physics, quantum physics

Scientists have created the first “time-crystal” two-body system in an experiment that seems to bend the laws of physics.

It comes after the same team recently witnessed the first interaction of the new phase of matter.

Time were long believed to be impossible because they are made from in never-ending motion. The discovery, published in Nature Communications, shows that not only can crystals be created, but they have potential to be turned into useful devices.

Jun 6, 2022

WHO Is The OBSERVER That Holds The Key For OUR YOUTHFULNESS? | Dr David Sinclair Interview Clips

Posted by in categories: biotech/medical, economics, genetics, quantum physics

Observer, backup youthful copy, playing the right piano notes, quantum states oh my.


Dr David Sinclair explain about through his lab experiments, why he thinks there is an observer/backup copy for our youthfulness and what are the possible identities he can think of in this clip.

Continue reading “WHO Is The OBSERVER That Holds The Key For OUR YOUTHFULNESS? | Dr David Sinclair Interview Clips” »

Jun 5, 2022

Canadian company Xanadu achieves ‘big leap forward’ in quantum computer race

Posted by in categories: quantum physics, supercomputing

Jun 4, 2022

Manipulating photons for microseconds tops 9,000 years on a supercomputer

Posted by in categories: quantum physics, supercomputing

Ars Technica’s Chris Lee has spent a good portion of his adult life playing with lasers, so he’s a big fan of photon-based quantum computing. Even as various forms of physical hardware like superconducting wires and trapped ions made progress, it was possible to find him gushing about an optical quantum computer put together by a Canadian startup called Xanadu. But, in the year since Xanadu described its hardware, companies using that other technology continued to make progress by cutting down error rates, exploring new technologies, and upping the qubit count.

But the advantage of optical quantum computing didn’t go away, and now Xanadu is back with a reminder that it still hasn’t gone away. Thanks to some tweaks to the design it described a year ago, Xanadu is now able to sometimes perform operations with more than 200 qubits. And it has shown that simulating the behavior of just one of those operations on a supercomputer would take 9,000 years, while its optical quantum computer can do them in just a few-dozen milliseconds.

This is an entirely contrived benchmark: Just as Google’s quantum computer did, the quantum computer is just being itself while the supercomputer is trying to simulate it. The news here is more about the potential of Xanadu’s hardware to scale.

Jun 3, 2022

Loss-Free Excitonic Quantum Battery

Posted by in categories: energy, quantum physics

Circa 2019


Robust quantum energy storage devices are essential to realize powerful next-generation batteries. Herein, we provide a proof of concept for a loss-free excitonic quantum battery (EQB) by using an open quantum network model that exhibits exchange symmetries linked to its structural topology. By storing electronic excitation energy in a symmetry-protected dark state living in a decoherence-free subspace, one can protect the charged EQB from environment-induced energy losses, thereby making it a promising platform for long-term energy storage. To illustrate the key physical principles and potential functionality of this concept, we consider an open quantum network model of a para-benzene-like structure.

Jun 3, 2022

Two Time Crystals Have Been Successfully Linked Together For The First Time

Posted by in categories: computing, particle physics, quantum physics

Physicists have just taken an amazing step towards quantum devices that sound like something out of science fiction.

For the first time, isolated groups of particles behaving like bizarre states of matter known as time crystals have been linked into a single, evolving system that could be incredibly useful in quantum computing.

Following the first observation of the interaction between two time crystals, detailed in a paper two years ago, this is the next step towards potentially harnessing time crystals for practical purposes, such as quantum information processing.

Jun 3, 2022

Electrons in a crystal found to exhibit linked and knotted quantum twists

Posted by in categories: climatology, mathematics, quantum physics

As physicists delve deeper into the quantum realm, they are discovering an infinitesimally small world composed of a strange and surprising array of links, knots and winding. Some quantum materials exhibit magnetic whirls called skyrmions—unique configurations described as “subatomic hurricanes.” Others host a form of superconductivity that twists into vortices.

Now, in an article published in Nature a Princeton-led team of physicists has discovered that electrons in can link to one another in strange new ways. The work brings together ideas in three areas of science—condensed matter physics, topology, and —in a new way, raising unexpected questions about the quantum properties of electronic systems.

Topology is the branch of theoretical mathematics that studies geometric properties that can be deformed but not intrinsically changed. Topological quantum states first came to the public’s attention in 2016 when three scientists, including Duncan Haldane, who is Princeton’s Thomas D. Jones Professor of Mathematical Physics and Sherman Fairchild University Professor of Physics, were awarded the Nobel Prize for their theoretical prediction of topology in electronic materials.

Jun 2, 2022

Advanced quantum computer made available to the public for first time

Posted by in categories: computing, internet, quantum physics

A computer capable of achieving quantum advantage – a demonstration of supremacy over conventional machines – is the first that anyone can use over the internet.

Jun 2, 2022

Using laser technology to measure the rotational cooling of molecular ions colliding with electrons

Posted by in categories: particle physics, quantum physics, space

When it is free in cold space, a molecule will spontaneously cool down by slowing its rotation and losing rotational energy in quantum transitions. Physicists have shown that this rotational cooling process can be accelerated, slowed down and even inverted by the molecule’s collisions with surrounding particles.

Researchers at the Max-Planck Institute for Nuclear Physics in Germany and the Columbia Astrophysics Laboratory have recently carried out an experiment aimed at measuring the rate of quantum transitions caused by collisions between and electrons. Their findings, published in Physical Review Letters, offer the first experimental evidence of this rate, which had previously only been theoretically estimated.

“When electrons and molecular ions are present in tenuous, ionized gases, the lowest quantum level populations of the molecules can be changed in a collision process,” Ábel Kálosi, one of the researchers who carried out the study, told Phys.org. “One example of this process is in interstellar clouds, where observations reveal molecules predominantly in their lowest quantum states. The between the negatively charged electrons and the positively charged molecular ions makes the process of electronic collisions particularly efficient.”