Menu

Blog

Archive for the ‘quantum physics’ category: Page 3

Apr 4, 2024

Redefining Quantum Communication: Researchers Have Solved a Foundational Problem in Transmitting Quantum Information

Posted by in categories: nanotechnology, quantum physics

Quantum electronics represents a significant departure from conventional electronics. In traditional systems, memory is stored in binary digits. In contrast, quantum electronics utilizes qubits for storage, which can assume various forms, including electrons trapped in nanostructures known as quantum dots. Nonetheless, the ability to transmit information beyond the adjacent quantum dot poses a substantial challenge, thereby limiting the design possibilities for qubits.

Now, in a study recently published in Physical Review Letters, researchers from the Institute of Industrial Science at the University of Tokyo are solving this problem: they developed a new technology for transmitting quantum information over perhaps tens to a hundred micrometers. This advance could improve the functionality of upcoming quantum electronics.

Apr 4, 2024

Error-corrected qubits 800 times more reliable after breakthrough, paving the way for ‘next level’ of quantum computing

Posted by in categories: computing, quantum physics

Scientists used a technique called ‘active syndrome extraction’ to build four logical qubits from 30 physical ones and run 14,000 experiments without detecting a single error.

Apr 4, 2024

Dark Energy May Be Weakening, Major Astrophysics Study Finds

Posted by in categories: cosmology, quantum physics

A generation of physicists has referred to the dark energy that permeates the universe as “the cosmological constant.” Now the largest map of the cosmos to date hints that this mysterious energy has been changing over billions of years.

Apr 3, 2024

Transmitting entanglement between light and matter in the metropolitan network of Barcelona

Posted by in categories: computing, internet, quantum physics

As the efforts towards the realization of powerful quantum computers and quantum simulators continue, there is a parallel program aimed at attaining the quantum analog to the classical internet.

Apr 3, 2024

Researchers visualize quantum effects in electron waves

Posted by in category: quantum physics

One of the most fundamental interactions in physics is that of electrons and light. In an experiment at Goethe University Frankfurt, scientists have now managed to observe what is known as the Kapitza-Dirac effect for the first time in full temporal resolution. This effect was first postulated more than 90 years ago, but only now are its finest details coming to light.

Apr 3, 2024

Reimagining quantum dot single-photon sources: A breakthrough in monolithic Fabry-Perot microcavities

Posted by in categories: nanotechnology, particle physics, quantum physics

Self-assembled semiconductor quantum dots (QDs) represent a three-dimensional confined nanostructure with discrete energy levels, which are similar to atoms. They are capable of producing highly efficient and indistinguishable single photons on demand and are important for exploring fundamental quantum physics and various applications in quantum information technologies. Leveraging traditional semiconductor processes, this material system also offers a natural integration-compatible and scalable platform.

Apr 3, 2024

Student cleans up archival data and uncovers two stellar cocoons

Posted by in categories: quantum physics, robotics/AI, space

Machine learning revolutionizes secure quantum communication, pushing its boundaries to unprecedented frontiers.

Apr 3, 2024

Study unveils a new family of quantum anomalous Hall insulators

Posted by in categories: energy, quantum physics

Researchers at Fudan University in China have recently been trying to identify new promising quantum anomalous Hall insulators. Their latest paper, published in Physical Review Letters, outlines the unique characteristics of monolayer V2MX4, which could belong to a new family of quantum anomalous Hall insulators.

“Finding intrinsic quantum anomalous Hall materials is an important goal in topological material research,” Jing Wang, co-author of the paper, told Phys.org. “After we predicted MnBi2Te4, a paradigm example of magnetic topological and exhibiting quantum anomalous Hall effect in odd layer, we have been thinking about finding new intrinsic quantum anomalous Hall insulator with large gap.”

Large-gap quantum anomalous Hall insulator materials exhibit a quantum anomalous Hall effect with a relatively large energy gap between the valence and . These materials should exhibit a synergy between two seemingly conflicting properties, namely spin-orbit coupling and ferromagnetism.

Apr 3, 2024

‘Neutronic molecules’: Study shows neutrons can bind to quantum dots

Posted by in categories: particle physics, quantum physics

Neutrons are subatomic particles that have no electric charge, unlike protons and electrons. That means that while the electromagnetic force is responsible for most of the interactions between radiation and materials, neutrons are essentially immune to that force.

Apr 3, 2024

Classical optical neural network exhibits ‘quantum speedup’

Posted by in categories: information science, quantum physics, robotics/AI

In recent years, artificial intelligence technologies, especially machine learning algorithms, have made great strides. These technologies have enabled unprecedented efficiency in tasks such as image recognition, natural language generation and processing, and object detection, but such outstanding functionality requires substantial computational power as a foundation.

Page 3 of 72212345678Last