Menu

Blog

Archive for the ‘quantum physics’ category: Page 213

Jul 24, 2022

Physicists harness quantum “time reversal” to measure vibrating atoms

Posted by in categories: cosmology, particle physics, quantum physics

MIT physicists have significantly amplified quantum changes in atomic vibrations, allowing them to exclude noise from the classical world. This advance may allow them to measure these atomic oscillations, and how they evolve over time, and ultimately hone the precision of atomic clocks and of quantum sensors for detecting dark matter or gravitational waves.

Jul 23, 2022

How quantum batteries could lead to million-mile EVs

Posted by in categories: quantum physics, sustainability

The automotive industry has a ‘million-mile’ dream for electric vehicles, but it’s a boring one. They want to build a battery capable of being recharged over and over as many times as it takes to reach a million miles without losing its ability to retain a charge. Yawn.

We’re more interested in the cutting-edge quantum physics version of a million-mile battery: one that can last a million miles between charges.

This would effectively eliminate the need for the bulk of vehicle operators to ever charge their batteries. Even heavy-use owners could just pop into the shop for routine maintenance every couple of years to top their batteries off.

Jul 23, 2022

Breaking the Warp Barrier for Faster-Than-Light Travel: New Theoretical Hyper-Fast Solitons Discovered

Posted by in categories: information science, particle physics, quantum physics, space travel

Circa 2021


Astrophysicist at Göttingen University discovers new theoretical hyper-fast soliton solutions.

If travel to distant stars within an individual’s lifetime is going to be possible, a means of faster-than-light propulsion will have to be found. To date, even recent research about superluminal (faster-than-light) transport based on Einstein’s theory of general relativity would require vast amounts of hypothetical particles and states of matter that have “exotic” physical properties such as negative energy density. This type of matter either cannot currently be found or cannot be manufactured in viable quantities. In contrast, new research carried out at the University of Göttingen gets around this problem by constructing a new class of hyper-fast ‘solitons’ using sources with only positive energies that can enable travel at any speed. This reignites debate about the possibility of faster-than-light travel based on conventional physics. The research is published in the journal Classical and Quantum Gravity.

Continue reading “Breaking the Warp Barrier for Faster-Than-Light Travel: New Theoretical Hyper-Fast Solitons Discovered” »

Jul 23, 2022

Scientists used quantum psuedotelepathy to cheat reality

Posted by in category: quantum physics

View insights.


Objective reality might not be so objective after all. Scientists used a simple quantum trick to break the classical reality barrier. property= description.

Jul 22, 2022

The observation of Chern mosaic and Berry-curvature magnetism in magic angle graphene

Posted by in categories: materials, quantum physics

Researchers at the Weizmann Institute of Science, the Barcelona Institute of Science and Technology and the National Institute for Material Science in Tsukuba (Japan) have recently probed a Chern mosaic topology and Berry-curvature magnetism in magic-angle graphene. Their paper, published in Nature Physics, offers new insight about topological disorder that can occur in condensed matter physical systems.

“Magic angle twisted (MATBG) has drawn a huge amount of interest over the past few years due to its experimentally accessible flat bands, creating a playground of highly correlated physics,” Matan Bocarsly, one of the researchers who carried out the study, told Phys.org, “One such correlated phase observed in transport measurements is the quantum anomalous Hall effect, where topological edge currents are present even in the absence of an applied .”

The quantum anomalous Hall effect is a charge transport-related phenomenon, in which a material’s Hall resistance is quantized to the so-called von Klitzing constant. It resembles the so-called integer quantum Hall effect, which Bocarsly and his colleagued had studied extensively in their previous works, particularly in graphene and MATBG.

Jul 22, 2022

Quantum Pseudo-Telepathy Experiment Suggests Reality Doesn’t Exist Until You Observe It

Posted by in categories: neuroscience, particle physics, quantum physics

Using quantum entangled particles, scientists have managed to overcome the limits of probability to win a theoretical game more times than should be possible.

Jul 22, 2022

150,000 Qubits Printed On a Chip

Posted by in category: quantum physics

Jul 21, 2022

When Light and Electrons Spin Together: Advancing Toward Petahertz Electronics Based on Quantum Materials

Posted by in categories: particle physics, quantum physics

Theoretical physicists at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) have demonstrated how the coupling between intense lasers, the motion of electrons, and their spin influences the emission of light on the ultrafast timescale.

Electrons, which are present in all kinds of matter, are charged particles and therefore react to the application of light. When an intense light field hits a solid, electrons experience a force, called the Lorentz force, that drives them and induces some exquisite dynamics reflecting the properties of the material. This, in turn, results in the emission of light by the electrons at various wavelengths, a well-known phenomenon called high-harmonic generation.

Exactly how the electrons move under the influence of the light field depends on a complex mixture of properties of the solid, including its symmetries, topology, and band structure, as well as the nature of the light pulse. Additionally, electrons are like spinning tops. They have a propensity to rotate either clockwise or counter-clockwise, a property called the “spin” of the electrons in quantum mechanics.

Jul 21, 2022

The Coming RISC-V Revolution

Posted by in categories: quantum physics, robotics/AI

Simpler, faster, smaller, and cheaper chips are a key to low-power computing — even in AI.


RISC-V is taking off like a rocket.
In this video I discuss how RISC-V will reshape chip design industry.
#RISCV

Continue reading “The Coming RISC-V Revolution” »

Jul 21, 2022

Quantum computing breakthrough: a phase of matter that exists in two time dimensions

Posted by in categories: computing, quantum physics