Toggle light / dark theme

When black holes and other enormously massive, dense objects whirl around one another, they send out ripples in space and time called gravitational waves. These waves are one of the few ways we have to study the enigmatic cosmic giants that create them.

Astronomers have observed the high-frequency “chirps” of colliding black holes, but the ultra-low-frequency rumble of supermassive black holes orbiting one another has proven harder to detect. For decades, we have been observing pulsars, a type of star that pulses like a lighthouse, in search of the faint rippling of these waves.

Today, pulsar research collaborations around the world – including ours, the Parkes Pulsar Timing Array – announced their strongest evidence yet for the existence of these waves.

York University and an international team of astrophysicists have made an ambitious attempt to simulate the formation of galaxies and cosmic large-scale structure throughout staggeringly large swaths of space.

First results of their MillenniumTNG project are published in a series of 10 articles in the journal Monthly Notices of the Royal Astronomical Society. The new calculations help to subject the standard cosmological model to precision tests and to unravel the full power of upcoming new cosmological observations, say the researchers including York Assistant Professor Rahul Kannan.

In recent decades, cosmologists have gotten used to the perplexing conjecture that the universe’s matter content is dominated by enigmatic dark matter and that an even stranger dark energy field that acts as some kind of anti-gravity to accelerate the expansion of today’s cosmos. Ordinary baryonic matter makes up less than five percent of the cosmic mix, but this source material forms the basis for the stars and planets of galaxies like our own Milky Way.

The estimate of 400 rogue planets comes from a nine-year-long survey called Microlensing Observations in Astrophysics (MOA).

The Nancy Roman Grace Telescope, an upcoming space observatory, might aid in the discovery of hundreds of rogue exoplanets.

Planets of this sort float freely through galaxies and are not gravitationally tied to any star system.

“This gamma-ray burst was extremely bright. We expect to see one like this only every 10,000 years or so.”

A team of astronomers led by the University of Alabama in Huntsville has detected the brightest gamma-ray burst.

These bursts are thought to be among the most luminous explosions in the universe and created during the birth of black holes. GRBs generally last from less than a second to several minutes.


The University of Alabama in Huntsville (UAH) has announced that three researchers associated with the UAH Center for Space Plasma and Aeronomic Research (CSPAR) have discovered a gamma-ray burst (GRB) approximately 2.4 billion light-years away in the constellation Sagitta that ranks as the brightest ever observed. Believed to have been triggered by collapse of a massive star, it is accompanied by a supernova explosion, giving birth to a black hole.

Watch Closer To Truth’s library of 5,000 videos for free: https://closertotruth.com/

Are the laws of nature or physics blind in that they seek no direction and have no ‘purpose’? That’s the scientific paradigm. But the world works so well: from a very simple beginning, complexities and beauties have emerged. Some say that there are deep ‘organizing principles’ in the laws of nature such that complexities are natural and expected outcomes.

Support the show with Closer To Truth merchandise: https://bit.ly/3P2ogje.

Explore more interviews on complexity and emergence: https://shorturl.at/knpCH

The Fine-Tuning Argument is often seen as the best argument for the existence of God. Here we have assembled some of the world’s top physicists and philosophers to offer a reply. Not every critic of the argument comes from the same perspective. Some doubt there is a problem to be solved whilst others agree it is a genuine problem but think there are better solutions than the God hypothesis. Some like the multiverse and anthropics other don’t. We have tried to represent these different approaches and so it should be taken as given, that not all of the talking heads agree with each other. Nevertheless, they all share the view that the fine-tuning argument for God does not work. Nor are all the objectors atheist, Hans Halvorson offers what we think is a strong theological objection to the argument. This film does not try to argue that God doesn’t exist only that the fine-tuning argument is not a good reason to believe in God. Most of the footage was filmed exclusively for this film with some clips being re-used from our Before the Big Bang series, which can be viewed here: https://www.youtube.com/watch?v=Ry_pILPr7B8&list=PLJ4zAUPI-q…4hnojoCR4m All of the critics of the fine tuning argument that appear were sent a draft of the film more than a month before release and asked for any objections either to their appearance, the narration or any other aspect of the film. No objections were raised, and many replies were extremely positive and encouraging. A timeline of the subjects covered is below:
(We define God as a perfect Omni immaterial mind as for example modern Christians and Muslims advocate, there are other conceptions of God which our video does not address).
Just to be clear, this is a polemical film arguing against the fine tuning argument.

Timecodes.

0:00 Introduction.

Patreon: https://www.patreon.com/seanmcarroll.
Blog post with audio player, show notes, and transcript: https://www.preposterousuniverse.com/podcast/2022/06/06/200-…ultiverse/

The 200th episode of Mindscape! Thanks to everyone for sticking around for this long. To celebrate, a solo episode discussing a set of issues naturally arising at the intersection of philosophy and physics: how to think about probabilities and expectations in a multiverse. Here I am more about explaining the issues than offering correct answers, although I try to do a bit of that as well.

Mindscape Podcast playlist: https://www.youtube.com/playlist?list=PLrxfgDEc2NxY_fRExpDXr87tzRbPCaA5x.
Sean Carroll channel: https://www.youtube.com/c/seancarroll.

#podcast #ideas #science #philosophy #culture

A trio of astrophysicists, two from Colgate University and the third from the University of Texas, has found evidence of dark stars courtesy of data from the James Webb Space Telescope. In their study, reported in Proceedings of the National Academy of Sciences, Cosmin Ilie, Jillian Paulin and Katherine Freese, analyzed three galaxies spotted by the JWST and how they might relate to dark stars.

Back in 2007, Freese, along with Douglas Spolyar and Paolo Gondolo, proposed the idea of a dark star —rather than nuclear fusion, these theorized dark stars are powered by dark matter. Since that time, researchers have continued to study the idea of such a star, built models to show what they might look like and derived a list of characteristics that such a star might have. In the current study, Ilie, Paulin and Freese have found three candidates in Webb data that fit the bill.

Dark stars, the team suggests, likely could have been born during the early days of the universe—like other stars, they would have been made mostly of helium and hydrogen. But they would also contain dark matter—enough to provide a heat source. Such stars would not then be lit by nuclear fusion. If such stars did exist, they would be much larger than other types of stars that have been observed—so large that they might look like galaxies from Earth-based telescopes.

The scientific community has discovered a new planet. It is located 245 light-years away from Earth and has been named TOI-733b. Its size is slightly less than twice the radius of Earth. It has a unique feature: its atmosphere. For now, experts have presented two possibilities. The first is that it may have lost its atmosphere layer. The second is that it could be a “highly irradiated oceanic world.”

This is stated in a study published by the specialized astronomy journal Astronomy & Astrophysics. In the study, it is detailed that this new planet has a density of 3.98 grams per cubic centimeter. To give an idea, it is slightly lower than Earth’s density, which is 5.51 grams per cubic centimeter, but higher than that of our neighbor Mars.

Another point mentioned in the Astronomy & Astrophysics article is that this planet orbits a star slightly smaller than the Sun and completes its orbit in a total of 4.9 days. It is this proximity to the star that serves as an explanation for the first of the two scenarios that scientists have proposed regarding its atmosphere.