Menu

Blog

Archive for the ‘particle physics’ category: Page 142

Sep 17, 2023

ATLAS experiment places some of the tightest limits yet on magnetic monopoles

Posted by in categories: particle physics, quantum physics

Magnets, those everyday objects we stick to our fridges, all share a unique characteristic: they always have both a north and a south pole. Even if you tried breaking a magnet in half, the poles would not separate—you would only get two smaller dipole magnets. But what if a particle could have a single pole with a magnetic charge?

For over a century, physicists have been searching for such . A new study on the preprint server arXiv from the ATLAS collaboration at the Large Hadron Collider (LHC) places new limits on these hypothetical particles, adding new clues for the continuing search.

In 1931, physicist Paul Dirac proved that the existence of magnetic monopoles would be consistent with quantum mechanics and require—as has been observed—the quantization of the electric charge. In the 1970s, magnetic monopoles were also predicted by new theories attempting to unify all the fundamental forces of nature, inspiring physicist Joseph Polchinski to claim that their existence was “one of the safest bets that one can make about physics not yet seen.” Magnetic monopoles might have been present in the but diluted to an unnoticeably tiny density during the early exponential expansion phase known as cosmic inflation.

Sep 17, 2023

Neutrinos: ‘Ghost Particles’ Can Interact With Light After All

Posted by in categories: particle physics, space

Neutrinos, the tricky little particles that just stream through the Universe like it’s virtually nothing, may actually interact with light after all.

According to new calculations, interactions between neutrinos and photons can take place in powerful magnetic fields that can be found in the plasma wrapped around stars.

It’s a discovery that could help us understand why the Sun’s atmosphere is so much hotter than its surface, say Hokkaido University physicist Kenzo Ishikawa and Yutaka Tobita, a physicist from Hokkaido University of Science – and, of course, to study the mysterious ghost particle in greater detail.

Sep 16, 2023

Universe slows cosmic growth defying the theory of relativity

Posted by in categories: cosmology, particle physics

Dark energy is believed to have a negative impact on big structures, limiting the formation of such particles.

Contrary to earlier understandings based on Einstein’s theory of general relativity, research from the University of Michigan has now found that the pace of growth of these substantial structures is slower than expected.


Large cosmic structures are predicted to expand at a certain rate as the universe expands, with galaxy clusters and other dense areas expanding faster than empty space.

Continue reading “Universe slows cosmic growth defying the theory of relativity” »

Sep 16, 2023

Gearing up for mobility’s future with quantum computing

Posted by in categories: computing, particle physics, quantum physics

Any physical object, alive or inanimate, is composed of atoms and subatomic particles that interact in different ways governed by the principles of quantum mechanics. Some particles are in a pure state—they remain fixed and unchanged. Others are in a quantum state—a concept that can be difficult to understand because it involves having a particle occupy multiple states simultaneously. For instance, an electron in a pure state spins up or down; in a quantum state, also referred to as superposition, it spins up and down simultaneously. Another quantum principle states that particles can be in a state of entanglement in which changes in one directly affect the other. The principles of superposition and entanglement are fundamental to quantum computing.

Quantum bits, or qubits, are the smallest units of data that a quantum computer can process and store. In a pure state, qubits have a value of 1 or 0, similar to the bits used in computing today. In superposition, they can be both of these values simultaneously, and that enables parallel computations on a massive scale. While classical computers must conduct a new calculation any time a variable changes, quantum computers can explore a problem with many possible variables simultaneously.

Existing computers, although sufficient for many applications, can’t fully support all of the changes required to create a connected and intelligent-mobility ecosystem. Quantum computing (QC) could potentially provide faster and better solutions by leveraging the principles of quantum mechanics—the rules that govern how atoms and subatomic particles act and interact. (See sidebar, “Principles of quantum computing,” for more information). Over the short term, QC may be most applicable to solving complex problems involving small data sets; as its performance improves, QC will be applied to extremely large datasets.

Sep 15, 2023

Whirlwind Tech: The Future of Energy-Efficient Spintronics Computing

Posted by in categories: computing, particle physics, sustainability

Researchers in Germany and Japan have been able to increase the diffusion of magnetic whirls, so-called skyrmions, by a factor of ten.

In today’s world, our lives are unimaginable without computers. Up until now, these devices process information using primarily electrons as charge carriers, with the components themselves heating up significantly in the process. Active cooling is thus necessary, which comes with high energy costs. Spintronics aims to solve this problem: Instead of utilizing the electron flow for information processing, it relies on their spin or their intrinsic angular momentum. This approach is expected to have a positive impact on the size, speed, and sustainability of computers or specific components.

Magnetic whirls store and process information.

Sep 15, 2023

AI and atoms: How artificial intelligence is revolutionizing nuclear material

Posted by in categories: particle physics, robotics/AI

There’s a three-dimensional solution to manage the evolving dual-use concern of AI: advance states-centric monitoring and regulation, promote intellectual exchange between the non-proliferation sector and the AI industry, and encourage AI industrial contributions.

Sep 15, 2023

Student-built nuclear fusion reactor to debut in Australia

Posted by in categories: nuclear energy, particle physics

The student-built Tokamak reactor will be 3 × 3 feet in size and be the first such facility built for nuclear fusion in a university.

Australia is set to become home to the world’s first nuclear fusion facility designed, built, and operated by students. The project is planned by the University of New South Wales (UNSW) but will not use nuclear fuel, a press release said.

Nuclear fusion is the process where atoms of lighter elements like hydrogen are heated up to hundreds of millions of degrees Celsius to enable their fusion under large amounts of force. The process releases large amounts of energy, which can then be used to power devices and machines.

Sep 15, 2023

Matter found to comprise 31% of the total amount of matter and energy in the universe

Posted by in categories: cosmology, economics, particle physics

One of the most interesting and important questions in cosmology is, “How much matter exists in the universe?” An international team, including scientists at Chiba University, has now succeeded in measuring the total amount of matter for the second time. Reporting in The Astrophysical Journal, the team determined that matter makes up 31% of the total amount of matter and energy in the universe, with the remainder consisting of dark energy.

“Cosmologists believe that only about 20% of the total is made of regular or ‘baryonic’ matter, which includes stars, galaxies, atoms, and life,” explains first author Dr. Mohamed Abdullah, a researcher at the National Research Institute of Astronomy and Geophysics-Egypt, Chiba University, Japan. “About 80% is made of , whose mysterious nature is not yet known but may consist of some as-yet-undiscovered subatomic particles.”

“The team used a well-proven technique to determine the total amount of matter in the universe, which is to compare the observed number and mass of galaxy clusters per unit volume with predictions from ,” says co-author Gillian Wilson, Abdullah’s former graduate advisor and Professor of Physics and Vice Chancellor for research, innovation, and economic development at UC Merced.

Sep 15, 2023

Rare-earth atom can make a quantum repeater at telecom wavelengths

Posted by in categories: particle physics, quantum physics

Demonstration with erbium marks a step towards long-distance quantum communication.

Sep 15, 2023

Scientists Discover “Demon” Particle

Posted by in categories: materials, particle physics

Right in time for spooky season, scientists have discovered the existence of something called the “demon” particle. While the name of the material may strike terror in some, its discovery is actually far less sinister. Hidden from researchers for over seven decades, the “composite” of electrons was recently discovered according to a new study published in Nature.

“Demons have been theoretically conjectured for a long time, but experimentalists never studied them,” paper senior author Peter Abbamonte said in the study. “In fact, we weren’t even looking for it. But it turned out we were doing exactly the right thing, and we found it.”