Menu

Blog

Archive for the ‘neuroscience’ category: Page 59

Sep 15, 2024

Critically synchronized brain waves form an effective, robust and flexible basis for human memory and learning

Posted by in category: neuroscience

Galinsky, V.L., Frank, L.R. Sci Rep 13, 4,343 (2023). https://doi.org/10.1038/s41598-023-31365-6

Download citation.

Sep 15, 2024

U(1) dynamics in neuronal activities

Posted by in categories: biological, neuroscience

Scientific Reports volume 12, Article number: 17,629 (2022) Cite this article.

Sep 15, 2024

Neural burst codes disguised as rate codes

Posted by in category: neuroscience

Scientific Reports volume 11, Article number: 15,910 (2021) Cite this article.

Sep 15, 2024

The structures and functions of correlations in neural population codes

Posted by in categories: futurism, neuroscience

In this Review, Panzeri, Moroni, Safaai and Harvey explain how the levels and structures of correlations among the activity of neurons in a population shape information encoding, transmission and readout, and describe how future research could determine how the structures of correlations are optimized.

Sep 15, 2024

What Is Neuromorphic Computing?

Posted by in categories: computing, engineering, neuroscience

Neuromorphic computing, also known as neuromorphic engineering, is an approach to computing that mimics the way the human brain works.

Sep 15, 2024

Microtubule-Stabilizer Epothilone B Delays Anesthetic-Induced Unconsciousness in Rats

Posted by in categories: biotech/medical, chemistry, neuroscience, quantum physics

Volatile anesthetics reversibly abolish consciousness or motility in animals, plants, and single-celled organisms (Kelz and Mashour, 2019; Yokawa et al., 2019). For humans, they are a medical miracle that we have been benefiting from for over 150 years, but the precise molecular mechanisms by which these molecules reversibly abolish consciousness remain elusive (Eger et al., 2008; Hemmings et al., 2019; Kelz and Mashour, 2019; Mashour, 2024). The functionally relevant molecular targets for causing unconsciousness are believed to be one or a combination of neural ion channels, receptors, mitochondria, synaptic proteins, and cytoskeletal proteins.

The Meyer–Overton correlation refers to the venerable finding that the anesthetic potency of chemically diverse anesthetic molecules is directly correlated with their solubility in lipids akin to olive oil (S. R. Hameroff, 2018; Kelz and Mashour, 2019). The possibility that general anesthesia might be explained by unitary action of all (or most) anesthetics on one target protein is supported by the Meyer–Overton correlation and the additivity of potencies of different anesthetics (Eger et al., 2008). Together these results suggest that anesthetics may act on a unitary site, via relatively nonspecific physical interactions (such as London/van der Waals forces between induced dipoles).

Cytoskeletal microtubules (MTs) have been considered as a candidate target of anesthetic action for over 50 years (Allison and Nunn, 1968; S. Hameroff, 1998). Other membrane receptor and ion channel proteins were ruled out as possible unitary targets by exhaustive studies culminating in Eger et al. (2008). However, MTs (composed of tubulin subunits) were not ruled out and remain a candidate for a unitary site of anesthetic action. MTs are the major components of the cytoskeleton in all cells, and they also play an essential role in cell reproduction—and aberrant cell reproduction in cancer—but in neurons, they have additional specialized roles in intracellular transport and neural plasticity (Kapitein and Hoogenraad, 2015). MTs have also been proposed to process information, encode memory, and mediate consciousness (S. R. Hameroff et al., 1982; S. Hameroff and Penrose, 1996; S. Hameroff, 2022). While classical models predict no direct role of MTs in neuronal membrane and synaptic signaling, Singh et al. (2021a) showed that MT activities do regulate axonal firing, for example, overriding membrane potentials. The orchestrated objective reduction (Orch OR) theory proposes that anesthesia directly blocks quantum effects in MTs necessary for consciousness (S. Hameroff and Penrose, 2014). Consistent with this hypothesis, volatile anesthetics do bind to cytoskeletal MTs (Pan et al., 2008) and dampen their quantum optical effects (Kalra et al., 2023), potentially contributing to causing unconsciousness.

Sep 15, 2024

Using machine learning to uncover predictors of well-being

Posted by in categories: genetics, neuroscience, robotics/AI

Irrespective of their personal, professional and social circumstances, different individuals can experience varying levels of life satisfaction, fulfillment and happiness. This general measure of life satisfaction, broadly referred to as “well-being,” has been the key focus of numerous psychological studies.

Better understanding the many factors contributing to well-being could help to devise personalized and targeted interventions aimed at improving people’s levels of fulfillment. While many past studies have tried to delineate these factors, few have done so leveraging the advanced machine learning models available today.

Machine learning models are designed to analyze large amounts of data, unveiling hidden patterns and making . Using these tools to analyze data collected in previous studies in neuroscience and psychology could help to shed light on the environmental and influencing well-being.

Sep 14, 2024

Wearable brain imaging device shines a light on how babies respond in real-world situations

Posted by in categories: neuroscience, wearables

The wearable…


A new technology that uses light waves to measure activity in babies’ brains has provided the most complete picture to date of functions like hearing, vision and cognitive processing outside a conventional brain scanner, in a new study led by researchers at UCL and Birkbeck.

Sep 13, 2024

Loss of the Primal Eye, R.E.M as Phasic Transients, and the origins of Dreaming

Posted by in categories: chemistry, evolution, neuroscience

NEW PAPER — Loss of the Primal Eye in evolution, REM explained as phasic transients, and the emergence of DREAMING in E1 animals. MA dissertation Philosophy, University of Leeds 1995/1996.


There are a number of reasons why dreaming has been, and remains, an important area to philosophy. Dreams are ‘pure’ experiential phenomena not (seemingly) requiring input from the outside world via the special senses. As Aristotle puts it, “If all creatures, when the eyes are closed in sleep, are unable to see, and the analogous statement is true of the other senses, so that manifestly we perceive nothing when asleep; we may conclude that it is not by sense-perception we perceive a dream”. A major part of this dissertation is concerned with issues raised in Owen Flanagan’s (1995) article, Deconstructing Dreams: The Spandrels of Sleep. The Primal Eye/MVT account of consciousness gives p-dreaming a more central explanatory role, and I argue that p-dreams are not epiphenomena in the way Flanagan claims. An important omission from Flanagan’s account is any discussion of important dreaming-related phenomena. I look at lucid dreaming, hypnosis and other mental phenomena in relation to the evolutionary loss of the primal/ median/ parietal eye, and postulate that REM rapid eye movements are ‘phasic transients’ considering the E1 brain which includes the lateral eyes, as a consciousness-producing circuit. A brief account of Primal Eye/ Median Vision Theory is that capacity for abstract/ centrally evoked mentation is a direct result of the evolutionary loss of the primal eye. E2 (earlier hardwired brains with both primal and lateral eyes) have evolved over millions of years into E1 brain circuits analog(ous to infinite-state) types of self-regulating plastic circuits, with no primal/pineal eye, but retaining lateral eyes and the pineal gland. Loss of this ‘lockstep mechanism’ median/primal/ parietal/pineal eye not only allowed new sleeping mental phenomena such as dreaming; but also heralded in new types of waking mental abstraction freed from E2 involuntary primal eye direct (electro-chemical) responses to changes in the physical environment. These include daydreams, visualisation with both lateral eyes closed, self-volition or self-determined choices, and so on.

See Full PDF

Sep 13, 2024

Scientists uncover brain-gut connection that impairs immune defenses during psychological stress

Posted by in categories: biotech/medical, neuroscience

Psychological stress disrupts communication between the brain and gut, reducing protective mucus production in the intestines. This weakens the immune system and makes the body more vulnerable to infections, but probiotics may help restore balance.

Page 59 of 1,037First5657585960616263Last