Menu

Blog

Archive for the ‘neuroscience’ category: Page 257

Aug 8, 2023

How Neurons Make Connections

Posted by in categories: biotech/medical, neuroscience

For many people, they are tiny pests. These fruit flies that sometimes hover over a bowl of peaches or a bunch of bananas. But for a dedicated community of researchers, fruit flies are an excellent model organism and source of information into how neurons self-organize during the insect’s early development and form a complex, fully functioning nervous system.

That’s the scientific story on display in this beautiful image of a larval fruit fly’s developing nervous system. Its subtext is: fundamental discoveries in the fruit fly, known in textbooks as Drosophila melanogaster, provide basic clues into the development and repair of the human nervous system. That’s because humans and fruit flies, though very distantly related through the millennia, still share many genes involved in their growth and development. In fact, 60 percent of the Drosophila genome is identical to ours.

Once hatched, as shown in this image, a larval fly uses neurons (magenta) to sense its environment. These include neurons that sense the way its body presses against the surrounding terrain, as needed to coordinate the movements of its segmented body parts and crawl in all directions.

Aug 8, 2023

How we lost collective spirituality — and why we need it back

Posted by in category: neuroscience

Spirituality declines, depression rises. Is there a link?

Aug 8, 2023

David Chalmers

Posted by in categories: computing, education, mathematics, neuroscience

David Chalmers is a philosopher at New York University and the Australian National University. He is Professor of Philosophy and co-director of the Center for Mind, Brain, and Consciousness at NYU, and also Professor of Philosophy at ANU.

Chalmers works in the philosophy of mind and in related areas of philosophy and cognitive science. He is especially interested in consciousness, but am also interested in all sorts of other issues in the philosophy of mind and language, metaphysics and epistemology, and the foundations of cognitive science.

From an early age, he excelled at mathematics, eventually completing his undergraduate education at the University of Adelaide with a Bachelor’s degree in Mathematics and Computer Science. He then briefly studied at Lincoln College at the University of Oxford as a Rhodes Scholar before receiving his PhD at Indiana University Bloomington under Douglas Hofstadter. He was a Postdoctoral Fellow in the Philosophy-Neuroscience-Psychology program directed by Andy Clark at Washington University in St. Louis from 1993 to 1995, and his first professorship was at UC Santa Cruz, from August 1995 to December 1998.

Aug 7, 2023

New Insights Into The Anti-Aging Properties Of Klotho

Posted by in categories: biotech/medical, life extension, neuroscience

The Klotho gene has gained increasing attention for its anti-aging properties. In the most recent installment of this series, we explored the promising cognitive benefits of administering Klotho to both mice and monkeys, the results from which may be mirrored in humans. The benefits of this circulating hormone, however, extend beyond the brain.

Klotho was first discovered as the antiaging gene in 1997 when researchers found that enhancing its expression could increase the lifespan of mice by more than 30%. Although a variety of different genes and environmental factors can influence longevity, studies have shown that Klotho-deficient mice not only have shorter lifespans but also experience more age-related complications. Premature aging in these mice often was accompanied by loss of muscle and fat tissue, thinning skin, reduced fertility, cardiovascular complications, movement abnormalities, and bone disease. Since Klotho is primarily produced in the kidneys, it is not surprising that many of these age-related complications often result from kidney dysfunction.

The kidneys generate two types of Klotho: a transmembrane protein that inserts itself into the cell membrane and mediates kidney function, and a secreted hormone that is released into the bloodstream. Individuals with naturally high levels of the hormone in their blood seem to not only live longer and be more resistant to age-related complications but also perform better on learning and memory tasks. In fact, even when a relatively small dose of Klotho is administered, animal studies have shown that the brain undergoes significant changes that allow more connections to be made in the hippocampus, the brain’s learning and memory center.

Aug 7, 2023

Donald Hoffman — Quantum Physics of Consciousness

Posted by in categories: neuroscience, quantum physics

Are quantum events required for consciousness in a very special sense, far beyond the general sense that quantum events are part of all physical systems? What would it take for quantum events, on such a micro-scale, to be relevant for brain function, which operates at the much higher level of neurons and brain circuits? What would it mean?

Free access to Closer to Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Continue reading “Donald Hoffman — Quantum Physics of Consciousness” »

Aug 7, 2023

Australian military is funding a computer chip merged with human brain cells

Posted by in categories: biotech/medical, computing, military, neuroscience

This article is an installment of Future Explored, a weekly guide to world-changing technology. You can get stories like this one straight to your inbox every Thursday morning by subscribing here.

The Australian military is funding a project to grow intelligent “mini-brains” in petri dishes. The goal is to use these “DishBrains” to design better AIs — and, eventually, even combine the two, creating AIs merged with processing features of human brain cells.

Continue reading “Australian military is funding a computer chip merged with human brain cells” »

Aug 7, 2023

Mayo Clinic Q and A: What is cardiac arrest?

Posted by in categories: biotech/medical, neuroscience

DEAR MAYO CLINIC: I’ve heard about several people who have experienced sudden cardiac arrest. What is cardiac arrest? And how is it different from a heart attack? What do you do for someone who has this condition?

ANSWER: Cardiac arrest, or sudden cardiac arrest as it is more formally known, is a medical emergency. Think of it as a problem with the heart’s electrical activity. This synchronized electrical activity allows the heart to fill and pump blood normally. Sudden cardiac arrest can happen unexpectedly and quickly, and the heart stops working. It’s not the same as a heart attack, but it is just as critical that treatment occurs rapidly.

Cardiac arrest is when the heart cannot fulfill its duties, such as pumping oxygenated blood around the body to reach critical areas such as the brain and the rest of the body. It is sometimes called “sudden” because it seems to happen without warning. A person suddenly loses all heart activity, stops breathing and becomes unconscious. Without immediate treatment, sudden cardiac arrest can lead to death.

Aug 7, 2023

New method to identify mutations in childhood brain tumors

Posted by in categories: biotech/medical, neuroscience

Researchers at Uppsala university have developed a new method to find mutations in brain tumors in children. They also showed that the mutations change how cancer cells respond to a cancer drug. These findings could lead to better diagnostics and more individualized treatment of children with brain tumors. The study is published in the journal Proceedings of the National Academy of Sciences.

Medulloblastoma is the most common malignant brain tumor in children. It usually develops in the cerebellum and although modern treatment has improved the prognosis so that more than 70% of patients now live more than five years, not all patients can be cured. The aggressive treatment also causes such as balance problems and impaired learning abilities in cancer survivors.

Numerous studies have explored the less than 2% of human DNA that gives rise to proteins, and much less is known about the rest of the . In a cancer, such as medulloblastoma, 98% of the mutations thus occur in the less studied part of the genome. There could be thousands of mutations, and it is difficult to separate the ones driving the cancer from those without importance.

Aug 7, 2023

Similarities in gene expression between post-mortem and living human brains

Posted by in categories: biotech/medical, health, neuroscience

An important objective of medical research is to identify the underlying molecular mechanisms of human brain health and diseases.

This objective has been predominantly achieved through observational studies of gene expression in human brain tissues obtained from post-mortem brain donors for their analysis. Importantly, many of these studies are based on the assumption that gene expression in the post-mortem human brain is an exact representation of gene expression in the living human brain.

A recent study published on the medRxiv preprint server challenges this assumption by comparing human prefrontal cortex gene expression between living and post-mortem samples.

Aug 7, 2023

How does the circulating proteome influence brain health?

Posted by in categories: biotech/medical, health, neuroscience

A recent study posted to the medRxiv preprint server investigates the association between the circulating proteome and brain health.

Study: The circulating proteome and brain health: Mendelian randomisation and cross-sectional analyses. Image Credit: Abduramanova Elena / Shutterstock.com.

*Important notice: medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Page 257 of 1,015First254255256257258259260261Last