Toggle light / dark theme

ETH researchers have cooled a nanoparticle to a record low temperature, thanks to a sophisticated experimental set-up that uses scattered laser light for cooling. Until now, no one has ever cooled a nanoparticle to such low temperatures in a photon cage. Dominik Windey and René Reimann – a doctoral student and postdoc in the group led by Lukas Novotny, Professor of Photonics – have succeeded in cooling a 140 nanometre glass bead down to a few thousandths of a degree above absolute zero.

The researchers recently published details of their work in the journal Physical Review Letters. Their breakthrough came in the form of a sophisticated experimental set-up involving , whereby a nanoparticle can be made to levitate with the aid of a laser beam. The group has already used the same optical tweezers in previous work, in which they caused a nanoparticle to rotate around its own axis at extremely high speed.

Read more

Checking out a stack of books from the library is as simple as searching the library’s catalog and using unique call numbers to pull each book from their shelf locations. Using a similar principle, scientists at the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—are teaming with Harvard University and the Massachusetts Institute of Technology (MIT) to create a first-of-its-kind automated system to catalog atomically thin two-dimensional (2-D) materials and stack them into layered structures. Called the Quantum Material Press, or QPress, this system will accelerate the discovery of next-generation materials for the emerging field of quantum information science (QIS).

Structures obtained by stacking single atomic layers (“flakes”) peeled from different parent bulk crystals are of interest because of the exotic electronic, magnetic, and that emerge at such small (quantum) size scales. However, flake exfoliation is currently a manual process that yields a variety of flake sizes, shapes, orientations, and number of layers. Scientists use optical microscopes at high magnification to manually hunt through thousands of flakes to find the desired ones, and this search can sometimes take days or even a week, and is prone to .

Once high-quality 2-D flakes from different crystals have been located and their properties characterized, they can be assembled in the desired order to create the layered structures. Stacking is very time-intensive, often taking longer than a month to assemble a single layered structure. To determine whether the generated structures are optimal for QIS applications—ranging from computing and encryption to sensing and communications—scientists then need to characterize the structures’ properties.

Read more

Graphene quantum dots drawn from common coal may be the basis for an effective antioxidant for people who suffer traumatic brain injuries, strokes or heart attacks.

Their ability to quench after such injuries is the subject of a study by scientists at Rice University, the Texas A&M Health Science Center and the McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth).

Quantum dots are semiconducting materials small enough to exhibit that only appear at the nanoscale.

Read more

(Natural News) Turkish inventors have created a new building material that is five times stronger than titanium and has the density of wood planks. Most remarkably, this new “Metallic wood” is lighter than titanium and still has the chemical stability of metal for use in manufacturing applications.

The new material is made out of nickel-based cellular materials as small as 17 nano-meters in diameter. These electroplated nickel nano-particles are strategically arranged in struts to maximize their load-bearing strength as a whole. This strategic arrangement of nickel makes the material four times stronger than bulk nickel plating. By tinkering with nano-meter-scale geometry, the inventors can increase the strength and density of the new material. This geometric arrangement of cellular materials is spatially organized and repeated to generate the new “Metallic wood” material. This geometric nano-meter engineering feat produces a very dense material, like that of wood. The inventors have even made the material as dense as water (1,000?kg/m3).

Read more

The idea is to give craftspeople the tools they need to incorporate digital services to the items they’re already making. Poupyrev made it clear that he doesn’t want fundamentally change tried and tested items, like a jacket, into a computer first, and an article of clothing second. He wants to imbue everyday items with digital functionality.

In its final form, Poupyrev envisions clothing, furniture, and accessories that are all connected to the cloud, each providing their own, specialized functionality. Users will interact with screens using their sleeves and pause their music by tapping their glasses. Step trackers will live in our shoes, translators will live in our ears, and medicinal nano-robots could be injected into our blood streams. The very notion of a computer will radically change as little computers get placed into everything.

“This could allow makers to image and create a new world where things are connected and we don’t need keyboards, screens, or mice to interact with computers,” he said. “I’ve been working on this for 20 years and as it’s taken shape I’m realizing that we’re not building an interface. We’re building a a new kind of computer, an invisible computer.”

Read more

Apr 11, 2019 (Heraldkeeper via COMTEX) — Summary:

A new market study, titled “Discover Global Aerogel Market Upcoming Trends, Growth Drivers and Challenges” has been featured on WiseGuyReports.

Introduction

Aerogel, a mesoporous solid foam, is composed of an interconnected nanostructure network with minimum 50% porosity. It consists of low thermal conductivity features, which make it an ideal insulation material. The global aerogel market value was about USD xx million in 2018, and is expected to grow at a CAGR of xx% to reach USD XX million by 2026.

Read more

Maxwell’s demon is a machine proposed by James Clerk Maxwell in 1897. The hypothetical machine would use thermal fluctuations to obtain energy, apparently violating the second principle of thermodynamics. Now, researchers at the University of Barcelona have presented the first theoretical and experimental solution of a continuous version of Maxwell’s demon in a single molecule system. The results, published in the journal Nature Physics, have applications in other fields, such as biological and quantum systems.

“Despite its simplicity and the large amount of work in the field, this new variant of the classical Maxwell demon has remained unexplored until now,” notes F\xE8lix Ritort, professor from the Department of Fundamental Physics of the UB. “In this study, we introduced a system able to extract large amounts of work arbitrarily per cycle through repeated measurements of the state of a system.”

Read more

Researchers from Drexel University and Trinity College in Ireland, have created ink for an inkjet printer from a highly conductive type of two-dimensional material called MXene. Recent findings, published in Nature Communications, suggest that the ink can be used to print flexible energy storage components, such as supercapacitors, in any size or shape.

Conductive inks have been around for nearly a decade and they represent a multi-hundred million-dollar market that is expected to grow rapidly into the next decade. It’s already being used to make the radiofrequency identification tags used in highway toll transponders, circuit boards in portable electronics and it lines car windows as embedded radio antennas and to aid defrosting. But for the technology to see broader use, conductive inks need to become more conductive and more easily applied to a range of surfaces.

Yury Gogotsi, Ph.D., Distinguished University and Bach professor in Drexel’s College of Engineering, Department of Materials Science and Engineering, who studies the applications of new materials in technology, suggests that the ink created in Drexel’s Nanomaterials Institute is a significant advancement on both of these fronts.

Read more

NIST researchers have explored in unprecedented detail a new breed of catalysts that allow some chemical reactions, which normally require high heat, to proceed at room temperature. The energy-saving catalysts use sunlight or another light source to excite localized surface plasmons (LSPs)—oscillations of groups of electrons on the surface of certain metal nanoparticles, such as gold, silver and aluminum. The energy derived from the LSP oscillations drives chemical reactions among molecules that adhere to the nanoparticles.

Scientists had previously shown that can be split into its individual atoms by the energy generated by the LSP oscillations. The NIST team has now discovered a second LSP-mediated reaction that proceeds at room temperature. In this reaction, LSPs excited in gold nanoparticles transform two molecules of carbon monoxide into carbon and carbon dioxide. The reaction, which ordinarily requires a minimum temperature of 400 degrees C., plays an important role in converting carbon monoxide into widely used carbon-based materials such as carbon nanotubes and graphite.

Probing the nanoparticles with an and combining the data with simulations, the NIST researchers pinpointed the sites on the gold nanoparticles where the reactions occurred. They also measured the intensity of the LSPs and mapped how the energy associated with the oscillations varied from place to place inside the nanoparticles. The measurements are key steps in understanding the role of LSPs for initiating reactions at room temperature, mitigating the need to heat the samples.

Read more