Menu

Blog

Archive for the ‘mathematics’ category: Page 95

Dec 24, 2021

PARADOX LOST: The Public Edition

Posted by in categories: cosmology, government, mathematics, particle physics, time travel

“PARADOX LOST: The Public Edition, by Marshall Barnes,” Oct 6, 2014.


This book is by internationally noted research and development engineer, Marshall Barnes, and is based on his special report for select members of the United States Congress on the coming reality of time travel, which is now here on the particle level. The only authoritative book on the subject of time travel, it scientifically answers all the issues around the topic, proves why paradoxes are impossible and why the world’s physicists have been so wrong about time travel for so long. Includes definitive analysis of errors by Stephen Hawking, Kip Thorne, Paul Davies, Tim Maudlin, among others. Answers Kurt Godel’s famous question of how can a past that hasn’t passed yet, be the past, and many other issues left unanswered by all other sources.

Among outstanding features, it details Marshall’s creation of the Verdrehung Fan™, the first time machine in the world, that is sending signals through traversable micro wormholes, as speculated could be possible in New Scientist magazine, May 20th, 2014. The Einstein related physics from which it works and how Marshall used it to defeat world famous Ronald Mallett in the race to build a time machine, is revealed as well as why Mallett is far less than the media has made him seem.

Easy to read but rich in detail, this book will be a challenge for scientist and non-scientist alike, with preconceived notions about the subject, as all cliches are dismantled and discarded, revealing stunning, hidden truths that are reached without ever taking a step off the path of known physics. This is the book for those wanting definitive answers backed by definitive proofs and calculations, without dealing with the heavy mathematics.

Dec 24, 2021

Examining recent developments in quantum chromodynamics

Posted by in categories: engineering, mathematics, particle physics, quantum physics

Created as an analogy for Quantum Electrodynamics (QED) — which describes the interactions due to the electromagnetic force carried by photons — Quantum Chromodynamics (QCD) is the theory of physics that explains the interactions mediated by the strong force — one of the four fundamental forces of nature.

A new collection of papers published in The European Physical Journal Special Topics and edited by Diogo Boito, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Brazil, and Irinel Caprini, Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania, brings together recent developments in the investigation of QCD.

The editors explain in a special introduction to the collection that due to a much stronger coupling in the — carried by gluons between quarks, forming the fundamental building blocks of matter — described by QCD, than the , the divergence of perturbation expansions in the mathematical descriptions of a system can have important physical consequences. The editors point out that this has become increasingly relevant with recent high-precision calculations in QCD, due to advances in the so-called higher-order loop computations.

Dec 23, 2021

Criticizing Starship (Part Three)

Posted by in categories: cybercrime/malcode, finance, government, internet, mathematics, space travel

He has done his math. The questions seem to be: How to put together viable payloads to make use of Stsrship launches? How to build new markets in space?


This again?! Game Over? Busted? We’re doing Starship again so soon because I’m an unoriginal hack. There’s also been new developments in Starship and I think it’s a perfect time to revisit the launch system. Get as mad as you wish.

Continue reading “Criticizing Starship (Part Three)” »

Dec 20, 2021

Lightelligence PACE Announcement Video

Posted by in categories: mathematics, robotics/AI

Lightelligence, the global optical computing innovator, revealed its Photonic Arithmetic Computing Engine (PACE), the company’s latest platform to fully integrate photonics and electronics in a small form factor.

As Lightelligence’s first demonstration of optical computing for use cases beyond AI and deep learning, PACE efficiently searches for solutions to several of the hardest computational math problems, including the Ising problem, and the graph Max-Cut and Min-Cut problems, illustrating the real-world potential of integrated photonics in advanced computation.

Continue reading “Lightelligence PACE Announcement Video” »

Dec 19, 2021

AI’s Impact On Biotechnology

Posted by in categories: biotech/medical, food, mathematics, robotics/AI

Biotechnology is a curious marriage of two seemingly disparate worlds. On one end, we have living organisms—wild, unpredictable celestial creations that can probably never be understood or appreciated enough, while on the other is technology—a cold, artificial entity that exists to bring convenience, structure and mathematical certainty in human lives. The contrast works well in combination, though, with biotechnology being an indispensable part of both healthcare and medicine. In addition to those two, there are several other applications in which biotechnology plays a central role—deep-sea exploration, protein synthesis, food quality regulation and preventing environmental degradation. The increasing involvement of AI in biotechnology is one of the main reasons for its growing scope of applications.

So, how exactly does AI impact biotechnology? For starters, AI fits in neatly with the dichotomous nature of biotechnology. After all, the technology contains a duality of its own—machine-like efficiency combined with the quaintly animalistic unpredictability in the way it works. In general terms, businesses and experts involved in biotechnology use AI to improve the quality of research and for improving compliance with regulatory standards.

More specifically, AI improves data capturing, analysis and pattern recognition in the following biotechnology-based applications:

Dec 19, 2021

Beyond Qubits: Unlocking the Third State in Quantum Processors

Posted by in categories: energy, mathematics, quantum physics

By Alex Hill, Senior Quantum Systems Engineer

Qubits are the basic building block of a quantum processor, and are so named because they represent a continuum of complex superpositions of two basic quantum states. The power of qubits comes in part from their ability to encode significantly more information than a classical bit — an infinite set of states between 0 and 1. In mathematical terms, quantum gates that manipulate the state of individual qubits are unitary operators drawn from SU.

Rigetti’s superconducting quantum processors are based on the transmon design [1]. Each physical qubit is an anharmonic oscillator, meaning that the energy gaps between subsequent qubit energy states decrease as the qubit climbs higher up the state ladder. We typically only address the first two states, 0 and 1 (in the literature, sometimes referred to as g(round) and e(xcited)); however, the design of our qubits supports even higher states. The simple structure of the transmon energy levels gives superconducting qubits the unique ability to address many of these states in a single circuit.

Dec 19, 2021

Cosmologists Close in on Logical Laws for the Big Bang

Posted by in categories: cosmology, mathematics, physics

Physicists are translating commonsense principles into strict mathematical constraints for how our universe must have behaved at the beginning of time.

Dec 17, 2021

Mathematician Hurls Structure and Disorder Into Century-Old Problem

Posted by in categories: computing, mathematics

The mathematician Ben Green of the University of Oxford has made a major stride toward understanding a nearly 100-year-old combinatorics problem, showing that a well-known recent conjecture is “not only wrong but spectacularly wrong,” as Andrew Granville of the University of Montreal put it. The new paper shows how to create much longer disordered strings of colored beads than mathematicians had thought possible, extending a line of work from the 1940s that has found applications in many areas of computer science.

The conjecture, formulated about 17 years ago by Ron Graham, one of the leading discrete mathematicians of the past half-century, concerns how many red and blue beads you can string together without creating any long sequences of evenly spaced beads of a single color. (You get to decide what “long” means for each color.)

This problem is one of the oldest in Ramsey theory, which asks how large various mathematical objects can grow before pockets of order must emerge. The bead-stringing question is easy to state but deceptively difficult: For long strings there are just too many bead arrangements to try one by one.

Dec 16, 2021

Building the Mathematical Library of the Future

Posted by in categories: futurism, mathematics

A small community of mathematicians is using a software program called Lean to build a new digital repository. They hope it represents the future of their field.

Dec 14, 2021

From flashing fireflies to cheering crowds: Physicists unlock secret to synchronisation

Posted by in categories: computing, information science, mathematics, physics

Physicists from Trinity have unlocked the secret that explains how large groups of individual “oscillators”—from flashing fireflies to cheering crowds, and from ticking clocks to clicking metronomes—tend to synchronize when in each other’s company.

Their work, just published in the journal Physical Review Research, provides a mathematical basis for a phenomenon that has perplexed millions—their newly developed equations help explain how individual randomness seen in the and in electrical and computer systems can give rise to synchronization.

We have long known that when one clock runs slightly faster than another, physically connecting them can make them tick in time. But making a large assembly of clocks synchronize in this way was thought to be much more difficult—or even impossible, if there are too many of them.

Page 95 of 153First9293949596979899Last