Menu

Blog

Archive for the ‘information science’ category: Page 242

Feb 28, 2019

Researchers develop a fleet of 16 miniature cars for cooperative driving experiments

Posted by in categories: information science, robotics/AI, transportation

A team of researchers at The University of Cambridge has recently introduced a unique experimental testbed that could be used for experiments in cooperative driving. This testbed, presented in a paper pre-published on arXiv, consists of 16 miniature Ackermann-steering vehicles called Cambridge Minicars.

“Using true-scale facilities for vehicle testbeds is expensive and requires a vast amount of space,” Amanda Prorok. “Our main objective was to build a low-cost, multi-vehicle that is easy to maintain and that is easy to use to prototype new algorithms. In particular, we were interested in testing and tangibly demonstrating the benefits of cooperative driving on multi-lane road topographies.”

Continue reading “Researchers develop a fleet of 16 miniature cars for cooperative driving experiments” »

Feb 28, 2019

Progress Towards Using Quantum Computers for Solving Quantum Chemistry and Machine Learning

Posted by in categories: chemistry, information science, quantum physics, robotics/AI

IonQ used its trapped-ion computer and a scalable co-design framework for solving chemistry problems. They applied it to compute the ground-state energy of the water molecule. The robust operation of the trapped ion quantum computer yields energy estimates with errors approaching the chemical accuracy, which is the target threshold necessary for predicting the rates of chemical reaction dynamics.

Quantum chemistry is a promising application where quantum computing might overcome the limitations of known classical algorithms, hampered by an exponential scaling of computational resource requirements. One of the most challenging tasks in quantum chemistry is to determine molecular energies to within chemical accuracy.

At the end of 2018, IonQ announced that they had loaded 79 operating qubits into their trapped ion system and had loaded 160 ions for storage in another test. This new research shows that they are making progress applying their system to useful quantum chemistry problems. They are leveraging the trapped-ions system longer stability to process many steps. The new optimization methods developed for this first major quantum chemistry problem can also be used to solve significant optimization and machine learning problems.

Continue reading “Progress Towards Using Quantum Computers for Solving Quantum Chemistry and Machine Learning” »

Feb 21, 2019

Israeli team develops way to find genetic flaws in fetus at 11 weeks

Posted by in categories: biotech/medical, computing, genetics, health, information science

Researchers at Tel Aviv University say they have developed a new, noninvasive method of discovering genetic disorders that can let parents find out the health of their fetus as early as 11 weeks into pregnancy.

A simple blood test lets doctors diagnose genetic disorders in fetuses early in pregnancy by sequencing small amounts of DNA in the mother’s and the father’s blood. A computer algorithm developed by the researchers analyzes the results of the sequencing and then produces a “map” of the fetal genome, predicting mutations with 99 percent or better accuracy, depending on the mutation type, the researchers said in a study published Wednesday in Genome Research.

The algorithm is able to distinguish between the genetic material of the parents and that of the fetus, said Prof. Noam Shomron of Tel Aviv University’s Sackler School of Medicine led the research, in a phone interview with The Times of Israel.

Continue reading “Israeli team develops way to find genetic flaws in fetus at 11 weeks” »

Feb 18, 2019

OpenAI’s GPT-2 algorithm is good in knitting fake news

Posted by in categories: information science, robotics/AI

Fake. Dangerous. Scary. Too good. When headlines swim with verdicts like those then you suspect, correctly, that you’re in the land of artificial intelligence, where someone has come up with yet another AI model.

So, this is, GPT-2, an algorithm and, whether it makes one worry or marvel, “It excels at a task known as language modeling,” said The Verge, “which tests a program’s ability to predict the next word in a given sentence.”

Depending on how you look at it, you can blame, or congratulate, a team at California-based OpenAI who created GPT-2. Their language modeling program has written a convincing essay on a topic which they disagreed with.

Continue reading “OpenAI’s GPT-2 algorithm is good in knitting fake news” »

Feb 18, 2019

Turning Light into Matter May Soon Be Possible

Posted by in categories: information science, particle physics

Circa 2014


Scientists may soon create matter entirely from light, using technology that is already available to complete a quest 80 years in the making.

The experiment would re-create events that were critical in the first 100 seconds of the universe and that are also expected to happen in gamma-ray bursts, the most powerful explosions in the cosmos and one of the greatest unsolved mysteries in physics, researchers added.

Continue reading “Turning Light into Matter May Soon Be Possible” »

Feb 18, 2019

A Report from the Longevity Therapeutics Summit

Posted by in categories: biotech/medical, information science, life extension, robotics/AI

The Longevity Therapeutics Summit was focused on therapeutics that target aging, rather than basic research or theory.


This was the first year for the Longevity Therapeutics Summit in San Francisco, California. Ably organized by Hanson Wade, with John Lewis, CEO of Oisín Biotechnologies, as program chair, the conference focused on senolytics for senescent cell clearance, big data and AI in finding new drugs (“in silico” testing), delivery systems for therapeutics like senolytics, TORC1 drugs, and biomarkers of aging, and the challenges of clinical trial development and FDA approval.

The conference featured a smorgasbord of cutting-edge longevity research, and, as the name implies, the general focus was on therapeutics that target aging, rather than basic research or theory.

Continue reading “A Report from the Longevity Therapeutics Summit” »

Feb 18, 2019

New Artificial Intelligence Does Something Extraordinary — It Remembers

Posted by in categories: information science, robotics/AI

It’s a really important first step towards artificial general intelligence, algorithms that can do more than a single narrowly-defined task.

Read more

Feb 17, 2019

OpenAI’s text synthesis algorithm generated this bit of Lord of the Rings fanfiction completely from scratch on its first try

Posted by in category: information science

19 votes and so far on Reddit.

Read more

Feb 16, 2019

Bill Gates: Textbooks are ‘becoming obsolete’— here’s the best way to learn today

Posted by in categories: entertainment, information science

“I read more than my share of textbooks,” Gates says. “But it’s a pretty limited way to learn something. Even the best text can’t figure out which concepts you understand and which ones you need more help with.”

Software can be used to create a much more dynamic learning experience, he says.

Gates gives the example of learning algebra. “Instead of just reading a chapter on solving equations, you can look at the text online, watch a super-engaging video that shows you how it’s done, and play a game that reinforces the concepts,” he writes. “Then you solve a few problems online, and the software creates new quiz questions to zero in on the ideas you’re not quite getting.”

Continue reading “Bill Gates: Textbooks are ‘becoming obsolete’— here’s the best way to learn today” »

Feb 15, 2019

One step closer to complex quantum teleportation

Posted by in categories: encryption, information science, quantum physics, robotics/AI

Circa 2018


The experimental mastery of complex quantum systems is required for future technologies like quantum computers and quantum encryption. Scientists from the University of Vienna and the Austrian Academy of Sciences have broken new ground. They sought to use more complex quantum systems than two-dimensionally entangled qubits and thus can increase the information capacity with the same number of particles. The developed methods and technologies could in the future enable the teleportation of complex quantum systems. The results of their work, “Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits,” is published recently in the renowned journal Nature Photonics.

Similar to bits in conventional computers, qubits are the smallest unit of in . Big companies like Google and IBM are competing with research institutes around the world to produce an increasing number of entangled qubits and develop a functioning quantum computer. But a research group at the University of Vienna and the Austrian Academy of Sciences is pursuing a new path to increase the information capacity of complex quantum systems.

Continue reading “One step closer to complex quantum teleportation” »