Menu

Blog

Archive for the ‘information science’ category: Page 201

Aug 27, 2020

Scaling Up Fundamental Quantum Chemistry Simulations on Quantum Hardware

Posted by in categories: chemistry, information science, quantum physics, robotics/AI

Accurate computational prediction of chemical processes from the quantum mechanical laws that govern them is a tool that can unlock new frontiers in chemistry, improving a wide variety of industries. Unfortunately, the exact solution of quantum chemical equations for all but the smallest systems remains out of reach for modern classical computers, due to the exponential scaling in the number and statistics of quantum variables. However, by using a quantum computer, which by its very nature takes advantage of unique quantum mechanical properties to handle calculations intractable to its classical counterpart, simulations of complex chemical processes can be achieved. While today’s quantum computers are powerful enough for a clear computational advantage at some tasks, it is an open question whether such devices can be used to accelerate our current quantum chemistry simulation techniques.

In “Hartree-Fock on a Superconducting Qubit Quantum Computer”, appearing today in Science, the Google AI Quantum team explores this complex question by performing the largest chemical simulation performed on a quantum computer to date. In our experiment, we used a noise-robust variational quantum eigensolver (VQE) to directly simulate a chemical mechanism via a quantum algorithm. Though the calculation focused on the Hartree-Fock approximation of a real chemical system, it was twice as large as previous chemistry calculations on a quantum computer, and contained ten times as many quantum gate operations. Importantly, we validate that algorithms being developed for currently available quantum computers can achieve the precision required for experimental predictions, revealing pathways towards realistic simulations of quantum chemical systems.

Aug 26, 2020

Can you make AI fairer than a judge? Play our courtroom algorithm game

Posted by in categories: habitats, information science, robotics/AI

As a child, you develop a sense of what “fairness” means. It’s a concept that you learn early on as you come to terms with the world around you. Something either feels fair or it doesn’t.

But increasingly, algorithms have begun to arbitrate fairness for us. They decide who sees housing ads, who gets hired or fired, and even who gets sent to jail. Consequently, the people who create them—software engineers—are being asked to articulate what it means to be fair in their code. This is why regulators around the world are now grappling with a question: How can you mathematically quantify fairness?

This story attempts to offer an answer. And to do so, we need your help. We’re going to walk through a real algorithm, one used to decide who gets sent to jail, and ask you to tweak its various parameters to make its outcomes more fair. (Don’t worry—this won’t involve looking at code!)

Aug 26, 2020

Artificial Intelligence Is Getting Insanely Good at Removing Shadows From Photographs of Faces

Posted by in categories: information science, mobile phones, robotics/AI

While Photoshop can do a pretty good job at removing shadows from faces, there’s a fair amount of legwork involved. One scientist has shown that neural networks and artificial intelligence can produce some very impressive results, suggesting that it will soon be a part of how we edit our photos.

Károly Zsolnai-Fehér of Two Minute Papers and the Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria, just released a video demonstrating how he has taught a neural network using large data sets to recognize and eliminate shadows from a face in a photograph. As detailed in the video, the neural network was taught by giving it photographs of faces to which shadows had been added artificially.

Given its effectiveness and the quality of the results, it seems only a matter of time before smartphones give you the option to remove shadows. In theory, you might even be able to switch on shadow removal while taking the photograph.

Aug 25, 2020

Nano-diamond self-charging batteries could disrupt energy as we know it

Posted by in categories: information science, nanotechnology, nuclear energy, particle physics, sustainability, transportation

https://youtube.com/watch?v=ksMXbhftBbM

California company NDB says its nano-diamond batteries will absolutely upend the energy equation, acting like tiny nuclear generators. They will blow any energy density comparison out of the water, lasting anywhere from a decade to 28,000 years without ever needing a charge. They will offer higher power density than lithium-ion. They will be nigh-on indestructible and totally safe in an electric car crash. And in some applications, like electric cars, they stand to be considerably cheaper than current lithium-ion packs despite their huge advantages.

The heart of each cell is a small piece of recycled nuclear waste. NDB uses graphite nuclear reactor parts that have absorbed radiation from nuclear fuel rods and have themselves become radioactive. Untreated, it’s high-grade nuclear waste: dangerous, difficult and expensive to store, with a very long half-life.

Continue reading “Nano-diamond self-charging batteries could disrupt energy as we know it” »

Aug 23, 2020

The term ‘ethical AI’ is finally starting to mean something

Posted by in categories: ethics, government, information science, robotics/AI

Since OpenAI first described its new AI language-generating system called GPT-3 in May, hundreds of media outlets (including MIT Technology Review) have written about the system and its capabilities. Twitter has been abuzz about its power and potential. The New York Times published an op-ed about it. Later this year, OpenAI will begin charging companies for access to GPT-3, hoping that its system can soon power a wide variety of AI products and services.


Earlier this year, the independent research organisation of which I am the Director, London-based Ada Lovelace Institute, hosted a panel at the world’s largest AI conference, CogX, called The Ethics Panel to End All Ethics Panels. The title referenced both a tongue-in-cheek effort at self-promotion, and a very real need to put to bed the seemingly endless offering of panels, think-pieces, and government reports preoccupied with ruminating on the abstract ethical questions posed by AI and new data-driven technologies. We had grown impatient with conceptual debates and high-level principles.

And we were not alone. 2020 has seen the emergence of a new wave of ethical AI – one focused on the tough questions of power, equity, and justice that underpin emerging technologies, and directed at bringing about actionable change. It supersedes the two waves that came before it: the first wave, defined by principles and dominated by philosophers, and the second wave, led by computer scientists and geared towards technical fixes. Third-wave ethical AI has seen a Dutch Court shut down an algorithmic fraud detection system, students in the UK take to the streets to protest against algorithmically-decided exam results, and US companies voluntarily restrict their sales of facial recognition technology. It is taking us beyond the principled and the technical, to practical mechanisms for rectifying power imbalances and achieving individual and societal justice.

Continue reading “The term ‘ethical AI’ is finally starting to mean something” »

Aug 23, 2020

Artificial intelligence wins over man in simulated aerial dogfight

Posted by in categories: information science, robotics/AI

An artificial intelligence algorithm by Heron Systems defeated an F-16 pilot in a simulated dogfight competition Thursday. Photo by SSgt. Christine Groening/U.S. Air force.

Aug 23, 2020

Facebook is training robot assistants to hear as well as see

Posted by in categories: information science, robotics/AI, virtual reality

In June 2019, Facebook’s AI lab, FAIR, released AI Habitat, a new simulation platform for training AI agents. It allowed agents to explore various realistic virtual environments, like a furnished apartment or cubicle-filled office. The AI could then be ported into a robot, which would gain the smarts to navigate through the real world without crashing.

In the year since, FAIR has rapidly pushed the boundaries of its work on “embodied AI.” In a blog post today, the lab has announced three additional milestones reached: two new algorithms that allow an agent to quickly create and remember a map of the spaces it navigates, and the addition of sound on the platform to train the agents to hear.

Aug 22, 2020

Artificial Intelligence is being used to find disease-related genes

Posted by in categories: biotech/medical, information science, robotics/AI

“We have for the first time used deep learning to find disease-related genes. This is a very powerful method in the analysis of huge amounts of biological information, or ‘big data’,” said Sanjiv Dwivedi, first author of the newly published research.

AI in gene expression

Aug 20, 2020

Artificial Intelligence Defeats Human F-16 Pilot In Virtual Dogfight

Posted by in categories: information science, military, robotics/AI

The plan in the next big war will probably be to let waves of AI fighters wipe out all the enemies targets, Anti aircraft systems, enemy fighters, enemy air fields etc…, however many waves that takes. And, then human pilots come in behind that.


An artificial intelligence algorithm defeated a human F-16 fighter pilot in a virtual dogfight sponsored by the Defense Advanced Research Projects Agency Thursday.

Aug 19, 2020

AI automatic tuning delivers step forward in quantum computing

Posted by in categories: information science, quantum physics, robotics/AI

Researchers at Oxford University, in collaboration with DeepMind, University of Basel and Lancaster University, have created a machine learning algorithm that interfaces with a quantum device and ‘tunes’ it faster than human experts, without any human input. They are dubbing it “Minecraft explorer for quantum devices.”

Classical computers are composed of billions of transistors, which together can perform complex calculations. Small imperfections in these transistors arise during manufacturing, but do not usually affect the operation of the computer. However, in a quantum computer similar imperfections can strongly affect its behavior.

In prototype semiconductor quantum computers, the standard way to correct these imperfections is by adjusting input voltages to cancel them out. This process is known as tuning. However, identifying the right combination of voltage adjustments needs a lot of time even for a single quantum . This makes it virtually impossible for the billions of devices required to build a useful general-purpose quantum computer.