Menu

Blog

Archive for the ‘information science’ category: Page 161

Oct 31, 2021

How Can Facebook Algorithms Be Accountable to Users?

Posted by in categories: information science, robotics/AI

This is the first installment blog summarizing AI Theology’s panel discussion on how to make Facebook algorithms accountable to users.

Oct 30, 2021

Precision Medicine Data Dive Shows “Water Pill” Could Potentially Be Repurposed To Treat Alzheimer’s

Posted by in categories: biotech/medical, genetics, information science, life extension, neuroscience

A commonly available oral diuretic pill approved by the U.S. Food and Drug Administration may be a potential candidate for an Alzheimer’s disease treatment for those who are at genetic risk, according to findings published in Nature Aging. The research included analysis showing that those who took bumetanide — a commonly used and potent diuretic — had a significantly lower prevalence of Alzheimer’s disease compared to those not taking the drug. The study, funded by the National Institute on Aging (NIA), part of the National Institutes of Health, advances a precision medicine approach for individuals at greater risk of the disease because of their genetic makeup.

The research team analyzed information in databases of brain tissue samples and FDA-approved drugs, performed mouse and human cell experiments, and explored human population studies to identify bumetanide as a leading drug candidate that may potentially be repurposed to treat Alzheimer’s.

“Though further tests and clinical trials are needed, this research underscores the value of big data-driven tactics combined with more traditional scientific approaches to identify existing FDA-approved drugs as candidates for drug repurposing to treat Alzheimer’s disease,” said NIA Director Richard J. Hodes, M.D.

Oct 30, 2021

New Algorithms Give Digital Images More Realistic Color

Posted by in categories: augmented reality, biotech/medical, computing, information science, virtual reality

In Optica, The Optical Society’s (OSA) journal for high impact research, Qiu and colleagues describe a new approach for digitizing color. It can be applied to cameras and displays — including ones used for computers, televisions and mobile devices — and used to fine-tune the color of LED lighting.

“Our new approach can improve today’s commercially available displays or enhance the sense of reality for new technologies such as near-eye-displays for virtual reality and augmented reality glasses,” said Jiyong Wang, a member of the PAINT research team. “It can also be used to produce LED lighting for hospitals, tunnels, submarines and airplanes that precisely mimics natural sunlight. This can help regulate circadian rhythm in people who are lacking sun exposure, for example.”

Oct 29, 2021

OpenAI’s Codex Translates Everyday Language Into Computer Code

Posted by in categories: information science, robotics/AI

The company believes its Codex machine learning algorithm is the next step in programming—a sidekick for coders to speed up the work and ease the drudgery.

Oct 27, 2021

A New Family of Electromagnetic Pulses: Skyrmions Can Fly!

Posted by in categories: information science, nanotechnology, particle physics

Topology in optics and photonics has been a hot topic since 1,890 where singularities in electromagnetic fields have been considered. The recent award of the Nobel prize for topology developments in condensed matter physics has led to renewed surge in topology in optics with most recent developments in implementing condensed matter particle-like topological structures in photonics. Recently, topological photonics, especially the topological electromagnetic pulses, hold promise for nontrivial wave-matter interactions and provide additional degrees of freedom for information and energy transfer. However, to date the topology of ultrafast transient electromagnetic pulses had been largely unexplored.

In their paper published in the journal Nature Communications, physicists in the UK and Singapore report a new family of electromagnetic pulses, the exact solutions of Maxwell’s equation with toroidal topology, in which topological complexity can be continuously controlled, namely supertoroidal topology. The electromagnetic fields in such supertoroidal pulses have skyrmionic structures as they propagate in free space with the speed of light.

Skyrmions, sophisticated topological particles originally proposed as a unified model of the nucleon by Tony Skyrme in 1,962 behave like nanoscale magnetic vortices with spectacular textures. They have been widely studied in many condensed matter systems, including chiral magnets and liquid crystals, as nontrivial excitations showing great importance for information storing and transferring. If skyrmions can fly, open up infinite possibilities for the next generation of informatics revolution.

Oct 27, 2021

FlexSail: Solar Sails and Tech Revolutions — Kent Nebergall — 2021 Mars Society Virtual Convention

Posted by in categories: bioengineering, economics, environmental, genetics, government, information science, robotics/AI, solar power, space, sustainability

Track code: TD-3

Abstract:
Solar Sails are at the same stage of engineering development as electric motors were in the 1830’s. Each attribute of solar flux has been examined in isolation, such as photon, proton, plasma, and electrodynamic systems. This talk recommends designing a simple baseline system that converges multiple propulsion methods into optimized systems, as is currently done with electric motors. Many convergences can come from this solution space. Once a baseline design is created, AI genetic algorithms can “flight test” and refine the designs in simulation to adjust proportions and geometry. Once a base design is refined, a second AI evolution pass would design fleet systems that flock like birds to optimize performance. These could fly as a protective shield around Mars crewed fleets, provide space based solar power, deploy rapid reaction probes for interstellar comets, and be used in NEO asteroid mining. In the long term, fleets of solar energy management vehicles can provide orbital Carrigan event protection and Martian solar wind protection for terraforming. This talk is also a case study in how technology revolutions happen, and how to accelerate the creation and democratization of technical solutions.

Continue reading “FlexSail: Solar Sails and Tech Revolutions — Kent Nebergall — 2021 Mars Society Virtual Convention” »

Oct 24, 2021

Rise of Robot Radiologists

Posted by in categories: biotech/medical, genetics, information science, life extension, robotics/AI

Circa 2019 😀


Because they can process massive amounts of data, computers can perform analytical tasks that are beyond human capability. Google, for instance, is using its computing power to develop AI algorithms that construct two-dimensional CT images of lungs into a three-dimensional lung and look at the entire structure to determine whether cancer is present. Radiologists, in contrast, have to look at these images individually and attempt to reconstruct them in their heads. Another Google algorithm can do something radiologists cannot do at all: determine patients’ risk of cardiovascular disease by looking at a scan of their retinas, picking up on subtle changes related to blood pressure, cholesterol, smoking history and aging. “There’s potential signal there beyond what was known before,” says Google product manager Daniel Tse.

The Black Box Problem

Continue reading “Rise of Robot Radiologists” »

Oct 24, 2021

NATO releases first-ever strategy for Artificial Intelligence

Posted by in categories: biotech/medical, information science, law, policy, quantum physics, robotics/AI, security

The strategy outlines how AI can be applied to defence and security in a protected and ethical way. As such, it sets standards of responsible use of AI technologies, in accordance with international law and NATO’s values. It also addresses the threats posed by the use of AI by adversaries and how to establish trusted cooperation with the innovation community on AI.

Artificial Intelligence is one of the seven technological areas which NATO Allies have prioritized for their relevance to defence and security. These include quantum-enabled technologies, data and computing, autonomy, biotechnology and human enhancements, hypersonic technologies, and space. Of all these dual-use technologies, Artificial Intelligence is known to be the most pervasive, especially when combined with others like big data, autonomy, or biotechnology. To address this complex challenge, NATO Defence Ministers also approved NATO’s first policy on data exploitation.

Individual strategies will be developed for all priority areas, following the same ethical approach as that adopted for Artificial Intelligence.

Oct 23, 2021

How a single-strategy crypto algorithm turned $100 into $36,205 in 10 months

Posted by in category: information science

You have to know the past to understand the present.

Oct 23, 2021

Skyrmions can fly!

Posted by in categories: information science, nanotechnology, particle physics

Topology in optics and photonics has been a hot topic since 1,890 where singularities in electromagnetic fields have been considered. The recent award of the Nobel prize for topology developments in condensed matter physics has led to renewed surge in topology in optics with most recent developments in implementing condensed matter particle-like topological structures in photonics. Recently, topological photonics, especially the topological electromagnetic pulses, hold promise for nontrivial wave-matter interactions and provide additional degrees of freedom for information and energy transfer. However, to date the topology of ultrafast transient electromagnetic pulses had been largely unexplored.

In their paper Nat. Commun., physicists in the UK and Singapore report a new family of pulses, the exact solutions of Maxwell’s equation with toroidal topology, in which topological complexity can be continuously controlled, namely supertoroidal topology. The in such supertoroidal pulses have skyrmionic structures as they propagate in free space with the speed of light.

Skyrmions, sophisticated topological particles originally proposed as a unified model of the nucleon by Tony Skyrme in 1,962 behave like nanoscale magnetic vortices with spectacular textures. They have been widely studied in many condensed matter systems, including chiral magnets and liquid crystals, as nontrivial excitations showing great importance for information storing and transferring. If skyrmions can fly, open up infinite possibilities for the next generation of informatics revolution.