Menu

Blog

Archive for the ‘health’ category: Page 99

Dec 24, 2022

Understanding Brain Mechanisms Underpinning Physical Movement and Exercise

Posted by in categories: biotech/medical, health, robotics/AI

Over the last two decades, scientists have postulated several theories that has helped to explain how we acquire motor skills, and the decisions we make in order to execute motor skills to navigate our environment. Additionally, the advent of neuroimaging techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have contributed significantly to our understanding of movement by providing possible neural correlates and processes that underpin various types of motor function. However, techniques such as EEG and fMRI are highly susceptible to motion artifacts during recording, which limits the range of movements that can be performed during scanning. This limitation impacts on the translational value of such findings in real-world applications.

To overcome the limitations of traditional neuroimaging paradigms, second generation neuroimaging devices such as portable EEG and functional near-infrared spectroscopy (fNIRS), and non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) can be used to study a broader range of dynamic movements and central changes associated with physical exercise. Both EEG and fNIRS can be applied concurrently with a motor task or exercise to understand its associated central response, while the application of non-invasive brain stimulation can help to establish causality by experimentally-induced facilitation or inhibition of specific neural networks.

In this research topic, we aim to showcase recent advances in the use of neuroimaging and non-invasive brain stimulation techniques to understand motor control processes and central adaptations to exercise across the lifespan and disease conditions. Submissions that are Original Research, Systematic Reviews and Meta-analysis, Literature review, Mini-review, Methods, and Perspective articles will be considered. Topics that cover, but not limited to, the following to domains are encouraged:

Dec 23, 2022

CHIP Landmark Ideas: Ray Kurzweil

Posted by in categories: biotech/medical, education, health, media & arts, Ray Kurzweil, robotics/AI, singularity

Rewriting Biology with Artificial Intelligence.

Ray Kurzweil.

Continue reading “CHIP Landmark Ideas: Ray Kurzweil” »

Dec 23, 2022

Research shows fatty liver disease endangers brain health

Posted by in categories: biotech/medical, health, neuroscience

In a study examining the link between non-alcoholic fatty liver disease (NAFLD) and brain dysfunction, scientists at the Roger Williams Institute of Hepatology, affiliated to King’s College London and the University of Lausanne, found an accumulation of fat in the liver causes a decrease in oxygen to the brain and inflammation to brain tissue—both of which have been proven to lead to the onset of severe brain diseases.

The paper appears in the Journal of Hepatology.

NAFLD affects approximately 25% of the population and more than 80% of morbidly obese people. Several studies have reported the negative effects of an unhealthy diet and obesity can have on however this is believed to be the first study that clearly links NAFLD with deterioration and identifies a potential therapeutic target.

Dec 22, 2022

Wearable skin patch could help clinicians diagnose tumors, organ malfunction and more

Posted by in categories: biotech/medical, health, wearables

Electronic wearable patches have been devised to monitor various health conditions by noninvasively detecting biomolecules on the skin surface.

A new Nature Communications study discusses the development of novel skin patches capable of deep detection of biomolecules, which correlate better and more rapidly with physiological states. For example, the photoacoustic patch described by the researchers, who are engineers at the University of California San Diego, can produce a three-dimensional (3D) map of deep tissue hemoglobin.

Dec 21, 2022

Already Spread to Every Continent: Unusual Fungus Has the Potential To Become a Global Health Problem

Posted by in categories: biotech/medical, health

Have you ever heard of the yeast Candida auris? If not, you are most likely not the only one since it hasn’t garnered much attention. Yet. That could change.

Candida auris’s story begins in 2009 when a Japanese woman in her 70s is admitted to the Tokyo Metropolitan Geriatric Hospital. Her ear sometimes discharges something, and the doctors routinely use a cotton swab to collect samples of it. To determine what is causing the infection, they analyze the sample.

It turns out that a yeast, different from other known yeasts, is at play. We’ve all heard of baker’s yeast, a friendly microorganism used to make beer and bread. Candida auris and other Candida yeast species are extremely different; they cause serious and persistent infections that are difficult to treat with known antibiotics.

Dec 20, 2022

Two Yardsticks Published in Annals of Allergy, Asthma and Immunology — Third on the Way

Posted by in categories: biotech/medical, health

Two new yardsticks, Clinical Guidance for the Use of Dupilumab in Eosinophilic Esophagitis: and

Dec 20, 2022

Nasal flu vaccine may help protect children against strep A, study shows

Posted by in categories: biotech/medical, health, security

Giving children the nasal flu vaccine may help protect them against strep A, according to analysis by the UK Health Security Agency.


UKHSA pilot scheme shows strep A infections lower in areas where nasal vaccine offered to all young children.

Alexandra Topping

Continue reading “Nasal flu vaccine may help protect children against strep A, study shows” »

Dec 19, 2022

Scientists Discover a New Daily Rhythm Providing Insight Into How Brain Activity Is Fine-Tuned

Posted by in categories: health, neuroscience

Researchers discovered a new daily rhythm in a kind of synapse that dampens brain activity using a mouse model. These neural connections, known as inhibitory synapses, are rebalanced as we sleep to allow us to consolidate new information into lasting memories. The results, which were published in the journal PLOS Biology, may help explain how subtle synaptic changes improve memory in humans. Researchers from the National Institute of Neurological Disorders and Stroke (NINDS), which is part of the National Institutes of Health, led the study.

“Inhibition is important for every aspect of brain function. But for over two decades, most sleep studies have focused on understanding excitatory synapses,” said Dr. Wei Lu, senior investigator at NINDS. “This is a timely study to try to understand how sleep and wakefulness regulate the plasticity of inhibitory synapses.”

Kunwei Wu, Ph.D., a postdoctoral fellow in Dr. Lu’s lab, investigated what occurs at inhibitory synapses in mice during sleep and wakefulness. Electrical recordings from neurons in the hippocampus, a brain region involved in memory formation, revealed a previously unknown pattern of activity. During wakefulness, steady “tonic” inhibitory activity increased but fast “phasic” inhibition decreased. They also discovered a far larger activity-dependent enhancement of inhibitory electrical responses in awake mouse neurons, suggesting that wakefulness, rather than sleep, might strengthen these synapses to a greater extent.

Dec 19, 2022

Science Changing Life Podcast, Brain Health

Posted by in categories: health, neuroscience, science

Copyright @ 2022 The Scripps Research Institute. All Rights Reserved. Terms of Use.

Dec 19, 2022

Scientists use machine learning to get an unprecedented view of small molecules

Posted by in categories: biotech/medical, chemistry, health, robotics/AI

A new machine learning model will help scientists identify small molecules, with applications in medicine, drug discovery and environmental chemistry. Developed by researchers at Aalto University and the University of Luxembourg, the model was trained with data from dozens of laboratories to become one of the most accurate tools for identifying small molecules.

Thousands of different small molecules, known as , transport energy and transmit cellular information throughout the human body. Because they are so small, metabolites are difficult to distinguish from each other in a blood sample analysis—but identifying these molecules is important to understand how exercise, nutrition, and metabolic disorders affect well-being.

Metabolites are normally identified by analyzing their mass and retention time with a separation technique called liquid chromatography followed by mass spectrometry. This technique first separates metabolites by running the sample through a column, which results in different flow rates—or retention times—through the measurement device.