Menu

Blog

Archive for the ‘climatology’ category: Page 4

Jan 16, 2024

Nebraska-Led Study Reveals Impact of Groundwater Depletion on Crop Yields from Drought and Dry Conditions

Posted by in categories: climatology, economics, sustainability

How can the increased threat of drought and drier conditions from climate change impact groundwater (aquifer) usage, and ultimately, food production? This is what a recent study partially funded by the U.S. Department of Agriculture and published in Nature Water hopes to address as a team of researchers led by the University of Nebraska-Lincoln investigated how decreasing aquifer levels result in irrigation challenges for farmers now only in the United States but throughout the world.

This study holds the potential to help scientists, farmers, and policymakers better understand the appropriate steps to manage irrigation levels as climate change continues to lead to increased drought and drier environmental conditions across the globe.

“In terms of things that let you address food security under extreme conditions — in particular, drought and climate change — we really can’t do without irrigation,” said Dr. Nick Brozović, who is a professor of agricultural economics at the University of Nebraska–Lincoln and a co-author on the study. “If we want to feed the world with high-quality, nutritious food and a stable food supply, we need to irrigate.”

Jan 15, 2024

Water molecule discovery contradicts textbook models

Posted by in categories: chemistry, climatology

Textbook models will need to be re-drawn after a team of researchers found that water molecules at the surface of salt water are organized differently than previously thought.

Many important reactions related to climate and environmental processes take place where interface with air. For example, the evaporation of ocean water plays an important role in atmospheric chemistry and climate science. Understanding these reactions is crucial to efforts to mitigate the human effect on our planet.

The distribution of ions at the interface of air and water can affect atmospheric processes. However, a precise understanding of the microscopic reactions at these important interfaces has so far been intensely debated.

Jan 10, 2024

Technique could efficiently solve partial differential equations for numerous applications

Posted by in categories: chemistry, climatology, engineering, information science, physics

In fields such as physics and engineering, partial differential equations (PDEs) are used to model complex physical processes to generate insight into how some of the most complicated physical and natural systems in the world function.

To solve these difficult equations, researchers use high-fidelity numerical solvers, which can be very time consuming and computationally expensive to run. The current simplified alternative, data-driven surrogate models, compute the goal property of a solution to PDEs rather than the whole solution. Those are trained on a set of data that has been generated by the high-fidelity solver, to predict the output of the PDEs for new inputs. This is data-intensive and expensive because complex physical systems require a large number of simulations to generate enough data.

In a new paper, “Physics-enhanced deep surrogates for ,” published in December in Nature Machine Intelligence, a new method is proposed for developing data-driven surrogate models for complex physical systems in such fields as mechanics, optics, thermal transport, fluid dynamics, , and .

Jan 9, 2024

Muon Space tapped by Air Force for cloud characterization from space

Posted by in categories: business, climatology, satellites

WASHINGTON — The startup Muon Space announced Jan. 9 it will explore the use of climate-monitoring satellites to capture cloud characterization data for the U.S. Air Force.

The Mountain View, California-based company, founded in 2021, is developing small satellites to monitor Earth’s climate and ecosystems.

Under a Small Business Innovation Research Phase 1 contract from the U.S. Air Force, Muon Space “will perform a feasibility study to determine the benefit of modifying its multispectral electro-optical infrared (EO/IR) instrument to support the Department of Defense’s cloud characterization observation capability,” the company said.

Jan 9, 2024

PIONEER Project: Enhancing Sea Wall Resilience in the Face of Climate-Driven Coastal Flooding

Posted by in categories: climatology, engineering, sustainability

As climate change continues to ravage the planet, coastal cities are at the highest risk due to coastal flooding attributed to sea level rise. According to the National Oceanic and Atmospheric Administration, approximately 127 million people in the United States alone live in coastal counties, or almost 40 percent of the entire population. Therefore, steps to protect coastal communities are of the utmost importance to mitigate the long-term impacts of climate change.

Strengthening coastal defenses from rising seas levels is what a groundbreaking study known as the PIONEER project, which is funded by the Engineering and Physical Sciences Research Council, hopes to address as scientists estimate coastal sea levels in the United States will experience the same sea level rise by 2050 that was experienced between 1920 and 2020, between 0.82 to 0.98 inches (0.25 to 0.30 meters).

“This is an interesting study because it combines, probably for the first time, the interactions for the effect of the water flooding on soils and, subsequently, on shoreline protective structures,” said Dr. Sherif Abdelaziz, who is an associate professor in the Charles E. Via, Jr. Department of Civil and Environmental Engineering, and one of many collaborators on the PIONEER project. “We will be able to assess how all these factors interact together so we can better design our shoreline protective structures to sustain the increasing intensity of waves and floods.”

Jan 9, 2024

Researchers develop strategy for adding keystone species to collapsing ecosystems

Posted by in categories: climatology, sustainability

There are very few animals as important to our world as honeybees. There is, of course, the delicious honey they produce, but they are also essential in maintaining food security and the biodiversity that is threatened by climate change and becoming our strongest natural defense against it.

But with the planet facing a -induced loss of , what happens when honeybees die?

New Northeastern University research, published in Communications Biology, aims to help address the impending biodiversity crisis. The researchers say they have found a new strategy for restoring lost biodiversity by, essentially, identifying the equivalent of a honeybee in different ecosystems and reintroducing it into a particular collapsing ecosystem.

Jan 5, 2024

The race to produce rare earth materials

Posted by in categories: climatology, sustainability

China has dominated the market for rare earth elements, but US scientists and companies are scrambling to catch up.

Abandoning fossil fuels and adopting lower-­carbon technologies are our best options for warding off the accelerating threat of climate change.

Jan 5, 2024

New theoretical framework unlocks mysteries of synchronization in turbulent dynamics

Posted by in categories: climatology, military

Weather forecasting is important for various sectors, including agriculture, military operations, and aviation, as well as for predicting natural disasters like tornados and cyclones. It relies on predicting the movement of air in the atmosphere, which is characterized by turbulent flows resulting in chaotic eddies of air.

However, accurately predicting this turbulence has remained significantly challenging owing to the lack of data on small-scale , which leads to the introduction of small initial errors. These errors can, in turn, lead to drastic changes in the flow states later, a phenomenon known as the chaotic butterfly effect.

To address the challenge of limited data on small-scale turbulent flows, a data-driven method known as Data Assimilation (DA) has been employed for forecasting. By integrating various sources of information, this approach enables the inference of details about small-scale turbulent eddies from their larger counterparts.

Jan 4, 2024

How electricity could help tackle a surprising climate villain

Posted by in category: climatology

Sublime Systems is trying to drive down the carbon footprint of cement production.

Cement hides in plain sight—it’s used to build everything from roads and buildings to dams and basement floors.

Jan 4, 2024

Is nuclear fusion the future of clean energy?

Posted by in categories: climatology, nuclear energy

Fusion is a kind of nuclear power, which could revolutionise how clean energy is produced. As a new wave of experiments heats up, can fusion live up to the hype?

00:33 The future of green energy.
02:00 What is nuclear fusion and how does it work?
03:17 Is it achievable?

Continue reading “Is nuclear fusion the future of clean energy?” »

Page 4 of 13312345678Last